已知x+y=9,xy=10,求x^2+y^2,x^3+y^3,x^4+y^4的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:04:17
已知x+y=9,xy=10,求x^2+y^2,x^3+y^3,x^4+y^4的值.
xVn@~HHvc+Ǫu*Q=BzIP5 GJhR^'W`rnD73mt%E'gsFə5kGOfIovqaO@E}KdN6W*lD&PG|5#qE ]m{RZWuϭƏH:+ mf1ym@n Xl= 9%"9嚦;?:ǥMJex~WNfm^S{{^*<~:lS n9^Y7]5!{6l0l͎vЃBd!~܋_V!vwFog^ xpr?xJ

已知x+y=9,xy=10,求x^2+y^2,x^3+y^3,x^4+y^4的值.
已知x+y=9,xy=10,求x^2+y^2,x^3+y^3,x^4+y^4的值.

已知x+y=9,xy=10,求x^2+y^2,x^3+y^3,x^4+y^4的值.
(x+y)²=81
x²+y²+2xy=81
所以x²+y²=81-2xy=61
x³+y³
=(x+y)(x²-xy+y²)
=9×(61-10)
=459
(x²+y²)²=61²
x^4+2x²y²+y^4=3721
所以x^4+y^4=3721-2(xy)²=3521

(x+y)^2=x^2+y^2+2xy=81
x^2+y^2=81-2xy=61
x^3+y^3=(x+y)(x^2+y^2-xy)=9*(61-10)=459
x^4+y^4=(x^2+y^2)^2-2(xy)^2=61^2-2*100=3521

x+y=9
(x+y)2=x^2+y^2+2xy
x^2+y^2=81-20=61

x+y=9
x²+2xy+y²=81
x²+y²=81-20
=61

1、x²+y²=(x+y)²-2xy=9²-20=61
2、x³+y³=(x+y)(x²-xy+y²)=9×(61-10)=459
3、x^4+y^4=(x²+y²)²-2(xy)²=61²-200=3521

x^2+y^2=(x+y)^2-2xy=81-20=61;
x^3+y^3=(x^2+y^2)(x+y)-xy(x+y)=61*9-10*9;
x^4+y^4=(x^2+y^2)^2-2x^2y^2=61^2-2*10^2

x²+y²=(x+y)²-2xy=81-20=61
x ³+y³=(x+y)(x²-xy+y²)=9(61-10)=459
x^4+y^4=(x²+y²)²-2x²y²=61²-200=3721-200=3521

x^2+y^2=(x+y)²-2xy=9²-2*10=61
x^3+y^3=(x+y)(x²-xy+y²)
=(x+y)[(x²+y²)-xy]
=9*(61-10)
=459
x^4+y^4
=(x^4+2x²y²+y^4)-2x²y²
=(x²+y²)²-2(xy)²
=61²-2*10²
=3721-200
=3521

这题好多分,围观~

x^2+y^2=(x+y)^2-2xy
x^3+y^3=(x+y)(x^2-xy+y^2)
x^4+y^4=(x^2+y^2)^2-2x^2y^2
将x+y=9,xy=10代入上面式子可得x^2+y^2,x^3+y^3,x^4+y^4为61,459,3521

x^2+y^2=(x+y)^2-2*xy=9*9-2*10=61
x^3+y^3=(x+y)(x^2-xy+y^2)=9*(61-10)=9*51=459
x^4+y^4=(x^2+y^2)^2-2*(x^2y^2)=(x^2+y^2)^2-2*((xy)^2)=61^2-2*(10^2)=3521

x²+y²=(x+y)²-2xy=10²-2*9=100-18=82
x^3+y^3=(x+y)(x²-xy+y²)=(x+y)[(x+y)²-3xy]=9*(9²-3*10)=9*(81-30)=9*49=441
x^4+y^4=x^4+2x²y²+y^4-2x²y²=(x²+y²)²-2x²y²=82²-2*10²=6524
望采纳~谢谢

x^2+y^2=(x+y)^2-2xy=81-20=61;
x^3+y^3=(x+y)^3-3xy(x+y)=729-270=459;
x^4+y^4=(x+y)^4-6(xy)^2-4xy(x^2+y^2)=9^4-600-40*61=3521

解 x^2+y^2=(y+x)^2-2xy=61
x^3+y^3=(x+y)(x^2-xy+y^2)=9*(61-10)=459
x^4+y^4=(x^2+y^2)^2-2x^2y^2=227

x^2+y^2=(x+y)^2-2xy=81-20=61
x^3+y^3=(x+y)*(x^2-xy+y^2)=(x+y)*{(x+y)^2-3xy}=9*(81-30)=459
x^4+y^4=(x^2+y^2)^2-2(xy)^2=61^2-200=3521

很多年前拿手的东西全丢了。如果你是高中的话:
一、先证明X、Y均为整数;
二、举个例子:x^2+y^2=(x+y)^2-2xy,用已知条件可得出结果。后面的同理可得出。祝你好运!