若x+y=4,x^3+y^3=(x+y)(x^2-xy+y^2)z,求x^3+12xy+y^3的值.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:36:17
x){ѽBD"X2VԨ3ҭ
iV<54?aMR>%l(L KbKA$Pʸ2,3 -&-F 1r l
若x+y=4,x^3+y^3=(x+y)(x^2-xy+y^2)z,求x^3+12xy+y^3的值.
若x+y=4,x^3+y^3=(x+y)(x^2-xy+y^2)z,求x^3+12xy+y^3的值.
若x+y=4,x^3+y^3=(x+y)(x^2-xy+y^2)z,求x^3+12xy+y^3的值.
x^3+12xy+y^3=(x+y)(x^2-xy+y^2)+12xy=(x+y)[(x+y)^2-3xy]+12xy
=(x+y)^3-3xy(x+y)+12xy=4^3-3xy*4+12xy=64