数列{an}中Sn=n*2^n求数列{an}的通项公式 这里学渣一只,求大神指导QAQ

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 05:51:34
数列{an}中Sn=n*2^n求数列{an}的通项公式 这里学渣一只,求大神指导QAQ
x){6uӎՉyOv γ2{ !|VˆY/|ں~glyvٳhxڿJϗ{t@@"}_`gC['kj ,~qAb96H ~,f]$ 6[AWf8HNy0{p*74 l2.TFQ,X5{

数列{an}中Sn=n*2^n求数列{an}的通项公式 这里学渣一只,求大神指导QAQ
数列{an}中Sn=n*2^n求数列{an}的通项公式 这里学渣一只,求大神指导QAQ

数列{an}中Sn=n*2^n求数列{an}的通项公式 这里学渣一只,求大神指导QAQ
an=Sn-S(n-1)
=n*2^n-(n-1)*2^(n-1)


因为:
an=Sn-S(n-1)
因此:
an=n*2^n - (n-1)2^(n-1)
=n*2^n - n*2^(n-1) + 2^(n-1)
=n*2^n - (n/2)*2^n + (1/2)*2^n
=(n-n/2 + 1/2)*2^n
=[(n+1)/2]*2^n