A+B=pie/3,tanA+tanB=2根号3/3,cosAcosB=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:04:54
x)sv-L7)IsNF|ڿ(_N6IE+/!l=@-tB%lp@I}
C]_+y1.bko S `=@>:-} :|py]N2#?7XF 1U0Ovy|==
0@W:\Pd;H-Gmf`MpBHYp@I R^
A+B=pie/3,tanA+tanB=2根号3/3,cosAcosB=
A+B=pie/3,tanA+tanB=2根号3/3,cosAcosB=
A+B=pie/3,tanA+tanB=2根号3/3,cosAcosB=
tan(A+B)=根号3
=(tanA+tanB)/(1-tanA*tanB)
则tanA*tanB=1/3 (sinA*sinB)/(cosA*cosB)=1/3
cos(A+B)=cosA*cosB-sinA*sinB=1/2
解得cosA*cosB=3/4
因为A+B=π/3,tanA+tanB=2根号3/3,
所以tanA+tan(π/3-A)=2根号3/3
解得tanA=根号3/3
所以A=π/6
那么B=π/6
cosAcosB=cos²π/6=3/4
0.75