定积分 ∫(π/6→π/2)cos²xdx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:32:41
定积分 ∫(π/6→π/2)cos²xdx
x){nv)

定积分 ∫(π/6→π/2)cos²xdx
定积分 ∫(π/6→π/2)cos²xdx

定积分 ∫(π/6→π/2)cos²xdx
∫(π/6→π/2) cos²x dx
= ∫(π/6→π/2) (1+cos2x)/2 dx
= (x+0.5sin2x)/2 | (π/6→π/2)
= (π/2 - π/6 - 0.5sinπ/3)/2
= π/6 - √3 /8