lim(x趋近于+∞)∫(0→x)(2arctantdt)/√(1+x²)等于什么?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 08:23:07
lim(x趋近于+∞)∫(0→x)(2arctantdt)/√(1+x²)等于什么?
xRAN@J3n4AH$YLbLF2FTThH;NW)4ݸp?yQ3Р>XIkCcߤG)J2Ks98cV#dzJ_X[otI]RƙwI_@W#^I ɑW:^`w߄đJ#ς8"R !&&ژhB PUc=(gDž,??eĄR05{zc;fqDtze(>+0Ng3!+:qs$ձ"JQ%FNV/SE[yJ¯\aQٜ1Qr

lim(x趋近于+∞)∫(0→x)(2arctantdt)/√(1+x²)等于什么?
lim(x趋近于+∞)∫(0→x)(2arctantdt)/√(1+x²)等于什么?

lim(x趋近于+∞)∫(0→x)(2arctantdt)/√(1+x²)等于什么?
解法一:∵∫2arctantdt=2xarctanx-2∫tdt/(1+t²) (应用分部积分法)
=2xarctanx-ln(1+x²)
lim(x->+∞)[ln(1+x²)/x]=lim(x->+∞)[2x/(1+x²)] (∞/∞型极限,应用罗比达法则)
=lim(x->+∞)[(2/x)/(1+1/x²)]
=0
∴原式=lim(x->+∞)[(2xarctanx-ln(1+x²))/√(1+x²)]
=lim(x->+∞)[(2arctanx-ln(1+x²)/x)/√(1+1/x²)] (分子分母同除x)
=[2(π/2)-0]/√(1+0)
=π;
解法二:原式=lim(x->+∞)[2arctanx/(x/√(1+x²))] (∞/∞型极限,应用罗比达法则)
=2[lim(x->+∞)(arctanx)]*{lim(x->+∞)[√(1+1/x²]}
=2(π/2)*√(1+0)
=π.

洛必达法则
=lim 2arctanx / (x/√(1+x²))
当x--->+∞时,arctanx--->π/2,x/√(1+x²)=1/√(1+1/x²)--->1
因此本题极限为π。