1.若P,Q是奇数,则议程X^2+PX+Q=0不可能有整数根2.已知X,Y>0,且X+Y=1,求证(1/X^2-1)(1/Y^2-1)>=9RT

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 23:50:41
1.若P,Q是奇数,则议程X^2+PX+Q=0不可能有整数根2.已知X,Y>0,且X+Y=1,求证(1/X^2-1)(1/Y^2-1)>=9RT
xRN@N 7E٘Fb2YM.Ā5&5b vڲ>h ƅ{=3)2R?4DH|ɵl|x}kʻ"y{ Sf*Bq TxxO@A 0OJT|yk;`2~odYE#hrݓఋQ$kZS>pb]!/ X@IEr&umI Y5Ê)]n1눩پ{NqnYa|J/AkCm)uX%* !<"C'V,VSQ` 7 t Q),|zԡ/ݤ8y?Ce*BW

1.若P,Q是奇数,则议程X^2+PX+Q=0不可能有整数根2.已知X,Y>0,且X+Y=1,求证(1/X^2-1)(1/Y^2-1)>=9RT
1.若P,Q是奇数,则议程X^2+PX+Q=0不可能有整数根
2.已知X,Y>0,且X+Y=1,求证(1/X^2-1)(1/Y^2-1)>=9
RT

1.若P,Q是奇数,则议程X^2+PX+Q=0不可能有整数根2.已知X,Y>0,且X+Y=1,求证(1/X^2-1)(1/Y^2-1)>=9RT
1、假设方程有整数根,x1、x2
根据韦达定理
x1+x2=-P
x1*x2=Q
∵Q为奇数
∴x1、x2均为奇数
∴x1+x2为偶数
∴P为偶数,这与原题P为奇数相矛盾.
∴若P,Q是奇数,则方程X^2+PX+Q=0不可能有整数根
2、假设(1/x²-1)(1/y²-1)<9
(1-(x²+y²)+x²y²)/x²y²<9
(1-1+2xy+x²y²)/x²y²<9
(2+xy)/xy<9
2/xy+1<9
4xy>1
4xy>(x+y)²
2xy>x²+y²
与x²+y²≥2xy矛盾
∴(1/x²-1)(1/y²-1)≥9