已知tanx=2,则sin2x+2cos2x=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:55:15
已知tanx=2,则sin2x+2cos2x=
x){}KK*ltv,36J/6I*'BΆS 74j kꃸjʆ@!(SV([J!7iGӵO'<%Ov/E{o:Īh#õt4@ M|~4 iBݱiRO&hu[dmui9D=׬yƅ/gNx( %}C][]}c]=TfCغ8D ]3}S;/|cճi;mbY+?Xl'=U@3 )1DJ+

已知tanx=2,则sin2x+2cos2x=
已知tanx=2,则sin2x+2cos2x=

已知tanx=2,则sin2x+2cos2x=
1、(sin2x+2cos2x)/(sin²x+cos²x)
=(2sinxcosx+2cos²x-2sin²x)/(sin²x+cos²x)
分子分母同时除以cos²x得
=[2tanx+2-2(tanx)²]/[(tan)²+1]
带入 tanx=2得
=(4+2-8)/(4+1)
=-2/5
2、tanx=2(第一象限)
tan2x=4/1-4=-4/3(第二象限)
sin2x=4/5(第二象限)
cos2x=-3/5(第二象限)
sin2x+2cos2x=4/5-6/5=-2/5
(这个方法要注意判断角在哪个象限)

1