已知函数f(x)=xe^x.1.求f(x)的单调区间与极值;2.是否存在实数a,使得对于任意的x1,x2∈(a,正无限),且x1小于x2,恒有(f(x2)-f(a))/x2-a大于(f(x1)-f(a))/x1-a成立?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 13:20:51
已知函数f(x)=xe^x.1.求f(x)的单调区间与极值;2.是否存在实数a,使得对于任意的x1,x2∈(a,正无限),且x1小于x2,恒有(f(x2)-f(a))/x2-a大于(f(x1)-f(a))/x1-a成立?
xVMOX+oW{b'5!ֳ*G ݍPyKC?ba0 BKU$)~N_` EGL}y{WJˎ80=x4 }> fK^򼕏phlNzh ᅳpǝ@lGs(s[h4:;6a[>F|:nnm Z&6gtAϮ|\+0k"Xo?]^ƀ%F- N鿘`]*:AhfWgዥ[{Nᗋ b{,+clZ,/_E` A)a߂90ϔ3 V&wAݩQ5E{&Mf(D1! k.#eDbnZ-^K-K¸٘ ɷMQf'nCqkInWgzACcCcAc_8Ef[h_i42eԆEZTpktG_7m+frT&ACUt A@Lm//8@(UsZ%g?Ԫ4 9<yf hӺ~T]x40@T{]ir4aPSGAaO dl __J

已知函数f(x)=xe^x.1.求f(x)的单调区间与极值;2.是否存在实数a,使得对于任意的x1,x2∈(a,正无限),且x1小于x2,恒有(f(x2)-f(a))/x2-a大于(f(x1)-f(a))/x1-a成立?
已知函数f(x)=xe^x.
1.求f(x)的单调区间与极值;
2.是否存在实数a,使得对于任意的x1,x2∈(a,正无限),且x1小于x2,恒有(f(x2)-f(a))/x2-a大于(f(x1)-f(a))/x1-a成立?

已知函数f(x)=xe^x.1.求f(x)的单调区间与极值;2.是否存在实数a,使得对于任意的x1,x2∈(a,正无限),且x1小于x2,恒有(f(x2)-f(a))/x2-a大于(f(x1)-f(a))/x1-a成立?
对函数F(X)求导,可得:f'(X)=e^x+xe^x.令f(x)=0 可以得到 e^x+xe^x=e^x(1+x)=0
解得 x=-1 .因为e^x 恒大于0 则可知 函数在(负无穷,0)单调递减 ,在(0,正无穷)单调递增 ,且有极小值 f(-1)=0
(2)恒有(f(x2)-f(a))/x2-a大于(f(x1)-f(a))/x1-a 可知 f(x2)-f(a))/x2-a-((f(x1)-f(a))/x1-a )>0
变换得( x1f(x2)-x1f(a) )/(x1x2)-( x2f(x1)-x2f(a) )/(x1x2)>0 ,由此可得f(a)>x1x2(e^x1-e^x2)/(x2-x1) ,因为x1x2均大于0 且 x1小于x2 ,则x1x2(e^x1-e^x2)/(x2-x1) 恒小于0 ,但由上一问可知f(x)>=0 可知f(a)>x1x2(e^x1-e^x2)/(x2-x1) 不成立 ,因此不存在 a 使得 (f(x2)-f(a))/x2-a大于(f(x1)-f(a))/x1-a成立.

1,求导 F'(X)=(X+1)*e^X
令F'(X)=0,X=-1 所以 (-无穷大到-1】为减 【-1,正无穷大)增
极小值F(-1)=-1/e
2,x1小于x2,恒有(f(x2)-f(a))/x2-a大于(f(x1)-f(a))/x1-a成立
所以(f(x)-f(a))/x-a为增函数
设g(x)=(f(x)-f(a))/x-a
导数...

全部展开

1,求导 F'(X)=(X+1)*e^X
令F'(X)=0,X=-1 所以 (-无穷大到-1】为减 【-1,正无穷大)增
极小值F(-1)=-1/e
2,x1小于x2,恒有(f(x2)-f(a))/x2-a大于(f(x1)-f(a))/x1-a成立
所以(f(x)-f(a))/x-a为增函数
设g(x)=(f(x)-f(a))/x-a
导数g“(x)=e^X+ae^a/X^2大等于0,就是增函数
所以x^2e^x+ae^a大等于0
设HX=x^2e^x+ae^a
导数H'X=(x^2+2x)e^x,令=0
x=0或-2, 所以-无穷,-2】增,【-2,0】减,【0,正无穷)增
所以极小值也就是最小值H(-2)=4/e^2+ae^a大等于0,
是不是算错了。。a解不出 ,不对。。应该是a属于R

收起

(1)
f`(x)=(x+1)e^x 知道 当x<-1 导数小于0 x>-1 导数大于0
所以单调递减区间(负无穷,-1) 递增区间(-1,正无穷) 极值点是-1
(2)
存在 当x>=-2时 等式成立 因为二介导 在x>-2时大于零 x<-2时小于零。