请问一下三角形面积的通用公式是什么来的?三角形的面积的通用公式是什么来的?忘了,好像是根号下,二边差什么的最后除二的.这样吧,为了方便回答,设三边分别为a,b,c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 20:30:14
请问一下三角形面积的通用公式是什么来的?三角形的面积的通用公式是什么来的?忘了,好像是根号下,二边差什么的最后除二的.这样吧,为了方便回答,设三边分别为a,b,c
xUKoW+]Pԇl/HTBe,ua!0B>DG2bsv^tn~ʧT;*Q>bm Փ{c"3մq|&[ծ^wL<,_,=aQ>,g}4V[r(E[G<یG#kb7SZO3XVn͚*mLy*A o3X-l`vS)-%*W"n.X.6c8kA+yD [2 JHԊbbz0Ov* s0<. ' n"=9l }ݮE3'5i%ko]kmzd 0]^;;Ҽ~<m~Ӕ2+i $kOb U #7-&.H ɴWmbz

请问一下三角形面积的通用公式是什么来的?三角形的面积的通用公式是什么来的?忘了,好像是根号下,二边差什么的最后除二的.这样吧,为了方便回答,设三边分别为a,b,c
请问一下三角形面积的通用公式是什么来的?
三角形的面积的通用公式是什么来的?忘了,
好像是根号下,二边差什么的最后除二的.
这样吧,为了方便回答,设三边分别为a,b,c

请问一下三角形面积的通用公式是什么来的?三角形的面积的通用公式是什么来的?忘了,好像是根号下,二边差什么的最后除二的.这样吧,为了方便回答,设三边分别为a,b,c
S=根号(p(p-a)(p-b)(p-c))
p=1/2(a+b+c)

是面积的吧
设P=A+B+C
S=(P*(P-A)(P-B)(P-C))^(1/2)

海伦定理
海伦公式又译希伦公式,传说是古代的叙拉古国王希伦二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的着作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表。
假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=\sqrt{s(s-a)(s-b)(s-c)}
而公式里的...

全部展开

海伦定理
海伦公式又译希伦公式,传说是古代的叙拉古国王希伦二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的着作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表。
假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=\sqrt{s(s-a)(s-b)(s-c)}
而公式里的s:
s=\frac{a+b+c}{2}
由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。
[编辑]证明
与海伦在他的着作"Metrica"中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则馀弦定理为
\cos(C) = \frac{a^2+b^2-c^2}{2ab}
从而有
\sin(C) = \sqrt{1-\cos^2(C)} = \frac{ \sqrt{-a^4 -b^4 -c^4 +2a^2b^2 +2b^2c^2 +2c^2a^2} }{2ab}
因此三角形的面积S为
S = \frac{1}{2}ab \sin(C)
= \frac{1}{4}\sqrt{-a^4 -b^4 -c^4 +2a^2b^2 +2b^2c^2 +2c^2a^2}
= \sqrt{s(s-a)(s-b)(s-c)}
最后的等号部分可用因式分解予以导出。

收起

正如 wildcat617 给的答案。
先用余弦定理,
再用两边和夹角的面积公式。