已知AB=AC,AD=AE,DE=BC,角BAD=角CAE求证BCED是矩形图如下:

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:00:49
已知AB=AC,AD=AE,DE=BC,角BAD=角CAE求证BCED是矩形图如下:
xSn@(Rwi<8~Tq%g<;6AH  D Ry Kd'{ 瞙ƛٷcYӲe&rZgplN,~nlR

已知AB=AC,AD=AE,DE=BC,角BAD=角CAE求证BCED是矩形图如下:
已知AB=AC,AD=AE,DE=BC,角BAD=角CAE求证BCED是矩形
图如下:

已知AB=AC,AD=AE,DE=BC,角BAD=角CAE求证BCED是矩形图如下:
分别连结CD与BE
在△BAD与△CAE中:
AB=AC
角BAD=角CAE
AD=AE
所以△BAD≌△CAE(SAS)
所以BD=CE,∠ADB=∠AEC
因为DE=BC
所以四边形BCED是平行四边形
因为AD=AE,所以∠ADE=∠AED
所以 ∠ADB-∠ADE=∠AEC-∠AED
即∠EDB=∠DEC
在△DBE与△ECD中:
BD=CE
∠EDB=∠DEC
DE=DE
所以△DBE≌△CEB(SAS),所以CD=BE
所以四边形BCED是矩形