已知函数f(x)对任意x∈R都有f(x+6)+f(x)=2f(3),y=f(x-1)的图像关于点(1,0)对称,且f(4)=4,则f(2012)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:54:03
xRN@~*]Z7GCRo
18ɏF)-.݅Lh^vgo6%e*:}VX80$6=9x3uvE1)e]M"|'6iq&ZKXћWDƆ(7nɛUL&BU2NƵ4צ
^oxcĻ6/?l!owxjJ~!+1q X=
$RnHT'?ÒRGýYhXٲkґ
BZt7PA Vd^ˣlU~79=C' +@@;U }6Sbބ4v鑤 }Q8Z"yr?M)
已知函数f(x)对任意x∈R都有f(x+6)+f(x)=2f(3),y=f(x-1)的图像关于点(1,0)对称,且f(4)=4,则f(2012)=
已知函数f(x)对任意x∈R都有f(x+6)+f(x)=2f(3),y=f(x-1)
的图像关于点(1,0)对称,且f(4)=4,则f(2012)=
已知函数f(x)对任意x∈R都有f(x+6)+f(x)=2f(3),y=f(x-1)的图像关于点(1,0)对称,且f(4)=4,则f(2012)=
这种题无非是根据函数的周期性、奇偶性之类性质求值.由f(x+6)+f(x)=2f(3),知f(x+12)+f(x+6)=2f(3),两式相减,得f(x+12)=f(x)由y=f(x-1)的图像关于点(1,0)对称,知f(x-1)+f(1-x)=0,故f(x)是奇函数.由f(x+6)+f(x)=2f(3),令x=-3,得f(3)=f(-3),于是f(3)=f(-3)=0,f(x+6)+f(x)=0.于是f(2012)=f(2012-12*167)=f(8)=-f(2)=f(-2)=-f(4)=-4
已知二次函数f(x)对任意x、y∈R都有f(x+y)=f(x)+f(y),且x>0时,f(x)
已知二次函数f(x)对任意x、y∈R都有f(x+y)=f(x)+f(y),且x>0时,f(x)
已知函数f(x)=sin^2x+acosx-2a,对任意x∈R,都有f(x)
已知函数f(x)对任意x,y属于R,都有f(x+y)=f(x)+f(y).当x>0时,f(x)
已知函数f(x),对任意x,y属于R,都有f(x+y)=f(x)+f(y),则f(x)的奇偶性如何
已知函数f(x)=5sin(2x+φ),若对任意的x∈R,都有f(a+x)=f(a-x),则f(a+派/4)已知函数f(x)=5sin(2x+φ),若对任意的x∈R,都有f(a+x)=f(a-x),则f(a+45度)
已知函数对任意x,y∈R,都有f(xy)=f(x)+f(y),且f(2)=3,求f(8)的值
已知函数对任意x,y∈R,都有f(xy)=f(x)+f(y),且f(2)=3,求f(8)的值.
设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x)
已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时有f(x)>0 ⑴判断函数奇偶性已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时有f(x)>0⑴判断函数
已知函数满足对任意xy属于R都有f(x+y)=f(x)*f(y)-f(x)-f(y)+2成立,且x2,证明x
已知函数f(x)对任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)
已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)+f(x-y)=2f(x)f(y),已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0(1):f(0)=1(2):判断函数的奇偶性
已知函数f(x)对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且f(1)=2,则f(1)+f(2)+.+f(n)=?
·函数奇偶性的一道题.OTL已知函数f(x)对任意的x,y∈R,都有f(x)+f(y)=f(x+y),且当x>0时,f(x)
已知函数f(x),x属于R,若对任意实数a,b都有f(a+b)=f(a)+f(b).求证f(x)为奇函数.
设函数f(x)在R上可导,且对任意x∈R有|f‘(x)|
已知函数f(x)的定义域为R,且不恒为0,对任意的x、y∈R,都有f(x+y)=f(x)+f(y),求证:f(x)为奇函数