正方体ABCD-A'B'C'D'中,M、N分别是面对角线AD'和BD的中点,求证(1)MN平行面CDD'C',MN垂直AD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 20:39:36
正方体ABCD-A'B'C'D'中,M、N分别是面对角线AD'和BD的中点,求证(1)MN平行面CDD'C',MN垂直AD
xRMN@n ɴ h4MV8?u|tڊ${_.FB<ŎKvXE,g+Lk.Da| Kvї'0!RjT֋zѠLO +.!Vu皅Rlz(^ UkJ=k^;od473bQ9\`\D>t<MMr% I n6HZR*,$ |Jȱ]vqdjM\51sK&qi,c

正方体ABCD-A'B'C'D'中,M、N分别是面对角线AD'和BD的中点,求证(1)MN平行面CDD'C',MN垂直AD
正方体ABCD-A'B'C'D'中,M、N分别是面对角线AD'和BD的中点,求证(1)MN平行面CDD'C',MN垂直AD

正方体ABCD-A'B'C'D'中,M、N分别是面对角线AD'和BD的中点,求证(1)MN平行面CDD'C',MN垂直AD
取AD中点O,连接MO,NO
在三角形ABD中,因为N,O为中点,所以NO平行于AB,也就是平行于CD
同理在三角形ADD'中,因为M,O为中点,所以MO平行于DD',
由于两条相交线NO,MO,分别与相交线CD,DD'平行,所以平面MNO平行于平面CDD'C',所以MN平行面CDD'C'
同样在两个直角三角形ABD,ADD'中,可得AD分别垂直于MO,NO,因此AD垂直于平面MNO,
所以,AD垂直 MN