用换元法求定积分,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:04:58
xJ@_%*d&դ}$M&3bQn\]Q*"W
I}h9߽s$cvye7i:NEá=0Q !JGr_QD@d
a2*%!WYAI*4!
B NRJeZ:#Mk:a!C6a3F}ٚՄMzأ60mn'yo,Qd1YQ+B|M2"
用换元法求定积分,
用换元法求定积分,
用换元法求定积分,
设 x = tant,则 dx = (sect)^2*dt.当 x = 0时,t = 0.当 x = 1时,t = π/4
∫dx/√(1+x^2)^3
=∫(sect)^2*dt/(sect)^3
=∫dt/(sect)
=∫cost*dt
=sint|0~π/4
=sin(π/4) - sin0
=√2/2