用换元法求定积分,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:04:58
用换元法求定积分,
xJ@_%*d&դ}$M&3bQn\]Q*"W I} h9߽s$cvye7i:NEá=0Q !JGr_QD@d a2*%!WYAI *4! B NRJeZ:#Mk:a!C 6a3F}ٚՄMzأ60mn'yo,Qd1YQ+ B|M2" 

用换元法求定积分,
用换元法求定积分,
 

用换元法求定积分,
设 x = tant,则 dx = (sect)^2*dt.当 x = 0时,t = 0.当 x = 1时,t = π/4
∫dx/√(1+x^2)^3
=∫(sect)^2*dt/(sect)^3
=∫dt/(sect)
=∫cost*dt
=sint|0~π/4
=sin(π/4) - sin0
=√2/2