已知y^2=4x,过点M(1,0)且斜率为k的直线l与抛物线C的准线相交于A点,与抛物线C的一个交点为B,若2AM向量=MB向量,则k=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 22:00:12
已知y^2=4x,过点M(1,0)且斜率为k的直线l与抛物线C的准线相交于A点,与抛物线C的一个交点为B,若2AM向量=MB向量,则k=?
xTn@$$б$⠄nHebY"HYB(hibDPKRT?]cNJE,f{G Arܪ=/:ʘ˝#oueލfI3G3VKG܅2ɤdtܭn.W ֓Xx0^քPN2y1v(QN#`ࢺe}8t^:(ۿ`C#ԗMEV~Cu"&

已知y^2=4x,过点M(1,0)且斜率为k的直线l与抛物线C的准线相交于A点,与抛物线C的一个交点为B,若2AM向量=MB向量,则k=?
已知y^2=4x,过点M(1,0)且斜率为k的直线l与抛物线C的准线相交于A点,与抛物线C的一个交点为B,若2AM向量=MB向量,则k=?

已知y^2=4x,过点M(1,0)且斜率为k的直线l与抛物线C的准线相交于A点,与抛物线C的一个交点为B,若2AM向量=MB向量,则k=?
设准线l与x轴的交点为D
(1)、如果抛物线的准线x=-p/2在点M的左侧,也就是说:
当x=-p/2<1即:p>-2时:
|MD|=1+p/2
∵k=√3 ∴直线AB与x轴的夹角θ为π/3
∴|AD|=|MD|*tanθ=√3(1+p/2)
∵此时A点在第三象限
∴A(-p/2,-√3(1+p/2))
∵M为AB中点,设B(m,n)
∴(m-p/2)/2=1,[n-√3(1+p/2)]/2=0
∴m=2+p/2,n=√3(1+p/2)……①
∵B(m,n)在抛物线上,n²=2pm
∴将①代入,得到:[√3(1+p/2)]²=2p(2+p/2)
解得:p=2或者:p=-6
∵p>-2 ∴舍去p=-6
故:p=2
(2)、如果抛物线的准线x=-p/2在点M的右侧,也就是说:
当x=-p/2>1即:p<-2时:
|MD|=-p/2-1
∵k=√3 ∴直线AB与x轴的夹角θ为π/3
∴|AD|=|MD|*tanθ=-√3(1+p/2)>0
∵此时A点在第三象限
∴A(-p/2,√3(1+p/2))
∵M为AB中点,设B(m,n)
∴(m-p/2)/2=1,[n+√3(1+p/2)]/2=0
∴m=2+p/2,n=-√3(1+p/2)……②
∵B(m,n)在抛物线上,n²=2pm
∴将②代入,得到:[-√3(1+p/2)]²=2p(2+p/2)
解得:p=2或者:p=-6
∵p<-2 ∴舍去p=2
故:p=-6
综合①、②两种情况,可以得到:
p=2或者:p=-6

k=±(√5)/2

已知点E(m,0)抛物线y2=4x内一定点过E做斜率为k1k2的俩直线交抛物线于A,B,C,D,且m已知点E(m,0)抛物线y^2=4x内一定点过E做斜率为k1k2的俩直线交抛物线于A,B,C,D,且m,n分别是线段AB,CD中点 当m=1且k1k2=- 已知圆O:X^2+Y^2=4点M(1,a)且a>0〈一〉若过M只有一条直线...L与圆O相切求a的值及直线的斜率 已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上,该动圆圆心轨迹M的方程为y^2=4x设过点P,且斜率为...已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上,该动圆圆心轨迹M的方程为y^2=4x设过 高数,微分方程部分:已知曲线y=f(x)上M(x,y)处切线斜率为-y/(x+y),且曲线过点(1,2),求曲线y=f(x). 已知曲线y=f(x)过(0,0)且在点(x,y) 处的斜率为k=3^2+1,求该曲线方程. 求过点M(-3,2)且斜率是直线X-2y+3=0的斜率的2倍的直线方程? 求过点M(-3,2),且斜率是直线L1:x-2y+3=0的斜率的2倍的直线方程 已知 圆O:X平方加Y平方等于4,点M(1,a)且a大于0,过点m有且只有一条直线与圆相切,求a的值再求直线L的斜率 已知直线l过点(-1,0)和(2,y),且斜率角是π除以6,则y= 直线与方程 (17 16:50:34)已知过点A(1,1)且斜率为-m(m>0)的直线l与x轴,y轴分别交于点P,Q,过点P,Q分别作直线2x+y=0的垂线,垂足分别为点R,S,求四边形PRSQ的面积的最小值? 已知过点A(0,1),且斜率为k的直线l与圆c(X-2)^2+(Y-3)^2=1,相交于M,N两点(2)求证:向量AM.向量AN=定值 已知过点A(0,1)且斜率为k的直线l与圆c:(x-2)?+(y-3)?=1相交于M、N两点 1.已知直线L1:2x+3y-6=0与x轴,y轴分别相交于点A,B,试在直线L2:y=x上求一点P,使||PA|-|PB||最大,并求出最大值.2.已知过点A(1,1)且斜率为-m(m>0)的直线L与X轴,Y轴分别交于点P,Q,过点P,Q分别作直线2X+Y=0 斜率为直线x+y-1=0斜率的两倍,且过点(1,3)的直线方程 已知曲线y=f(x)过点(1,2)且曲线任一点处切线的斜率为2x,则此曲线方程为. 已知点A(2,m)和B(m,-1)的直线斜率和直线2x-y+1=0的斜率相等,求m的值 已知过点A(1,1)且斜率为-M(M>0)的直线L与X,Y轴分别交于点P Q.过P Q作直线2X+Y=0的垂线,垂足为R S ,求四边形PRSQ面积的最小值? 已知过点A(1,1),且斜率为-m(m>0)的直线l与x,y轴分别交于点P,Q .过P,Q分别做直线2x+y=0的垂线,垂