若f(x)=asin(kx+π/3)和g(x)=btan(kx-π/3)(k>0),若它们的最小正周期之和为3π/2,且f(π/2)=g(π/2),f(π/4)=-√3g(π/4)+1,求这两个函数.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:30:02
x͒OK0ƿNkSb~"QT*,s8De:;#;H`9&)ÓyfѢwIok}ɡoDD+m awm9ÜMO
qVO#@ӎ%w6N
9W>8ۋKZ]>r~ƛ)o#,
ئ2v#uw%l&w%a?OfbBd+0X!2HEߙJ͈IrJ&1\4AĈddЄuMFfn!ey q
若f(x)=asin(kx+π/3)和g(x)=btan(kx-π/3)(k>0),若它们的最小正周期之和为3π/2,且f(π/2)=g(π/2),f(π/4)=-√3g(π/4)+1,求这两个函数.
若f(x)=asin(kx+π/3)和g(x)=btan(kx-π/3)(k>0),若它们的最小正周期之和为3π/2,
且f(π/2)=g(π/2),f(π/4)=-√3g(π/4)+1,求这两个函数.
若f(x)=asin(kx+π/3)和g(x)=btan(kx-π/3)(k>0),若它们的最小正周期之和为3π/2,且f(π/2)=g(π/2),f(π/4)=-√3g(π/4)+1,求这两个函数.
最小正周期之和为3π/2,
2π/k+π/k=3π/2
k=2
f(π/2)=asin(π+π/3)=-a√3/2
g(π/2)=btan(π-π/3)=-b√3
所以,a=2b
f(π/4)=asin(π/2+π/3)=a/2
g(π/4)=btan(π/2-π/3)=b√3/3
所以,a/2=-b+1
解方程组得:
a=1,b=1/2
所以,
f(x)=sin(2x+π/3),g(x)=1/2*tan(2x-π/3)
若f(x)=asin(kx+π/3)和g(x)=btan(kx-π/3)(k>0),若它们的最小正周期之和为3π/2,且f(π/2)=g(π/2),f(π/4)=-√3g(π/4)+1,求这两个函数.
设有函数f(x)=asin(kx-π/3)和函数g(x)=bcos(2kx-π/6),(a>0,b>0,k>o),若它们的最小正周期之和 为(3π)/2,且f(π/2)=g(π/2),f(π/4)=-√3g(π/4)-1,求这两个函数的解析式.
设有函数f(x)=asin(kx-π/3)和函数g(x)=bcos(2kx-π/6),(a>0,b>0,k>o),若它们的最小正周期之和 为(3π)/2,且f(π/2)=g(π/2),f(π/4)=-√3g(π/4)-1,求这两个函数的解析式.
已知函数f(x)=asin(kx+π/3),g(x)=btan(kx-π/3),k>0,它们的周期之和为3π/2,且f(π/2)=g(π/2),f(π/4)=-
有两个函数f(x)=asin(kx+π/3),g(x)=btan(kx-π/3)(k>0),已知它们的周期和为3π/2,且f(π/2)=g(π/2),f(π/4)=-√3g(π/4)+1,求a、b、k的值
设函数f(x)=asin(Kx+pai3)和函数g(x)=btan(KX-pai/3)(K大于0)若它们的最小正周期之和为3pai/2,且f(pai/2)=g(pai/2),f(pai/4)=-根号3g(pai/4)+1,求这两个函数
有两个函数f(x)=asin(kx+兀/3),g(x)=btan(kx-兀/3),它们的周期和为3兀/2求解析式要有具体过程,不要跳步,
已知函数f(x)=asin(kx+π/3)和φ(x)=btan(kx-π/3),k>0若它们的最小正周期之和是3π/2,且f(π/2)=φ(π/2),f(π/4)=-√3φ(π/4)+1,求f(x)和φ(x)的解析式
设函数f(x)=asin(kx-三分之派)和函数g(x)=bcos(2kx-六分之派)(a>0,b>0,k>0),若它们的最小正周期之和为二分之三派,且f(二分之派)=g(二分之派),f(四分之派)=-√3g(四分之派)-1,求这两个函数的解析式.
已知函数f(x)=asin(kx+π/3)和φ(x)=bcos(kx-π/3)+2011,k>0 它们最小正周期和为3π/2,
【高中三角函数题】 已知函数f(x)=Asin(π/2x-π/2,),g(x)=k(x-3),已知【高中三角函数题】已知函数f(x)=Asin(π/2x-π/2,),g(x)=k(x-3),已知当A=1时函数h(x)=f(x)-g(x)所有零点和为9,则当A=2时,函数h(x)=f(x)-g(x)的所
已知函数f(x)=Asin(ωx+φ)(A≠0,ω≠0),g(x)=Acos(ωx+φ),若对于任意实数x恒有f(π)已知函数f(x)=Asin(ωx+φ)(A≠0,ω≠0),g(x)=Acos(ωx+φ),若对于任意实数x恒有f(π/3+x)=f(π/3-x),试求个(π/3)的值试求g(π/3)的
设二次函数f=mx^2+nx+t的图线过原点,g=ax^3+bx-3(x>0) f,g的导函数为f'和g',且f'=0f‘=-2 f=g,f'=g'是否存在实常数k和m,使得f(x)≥kx+m和g(x)≤kx+m?若存在,求k和m的值,若不存在,说明理由
已知函数f(x)=x^3-2x 1,g(x)=lnx,是否存在实常数k,m,已知函数f(x)=x^3-2x+1,g(x)=lnx,是否存在实常数k,m,使得x>0时,f(x)≥kx+m且g(x)≤kx+m?若存在,求出k和m.
已知函数f(x)=2x^2-3x+1,g(x)=Asin(x-π/6)(A>0),当o
已知函数f(x)=2x^2-3x+1,g(x)=Asin(x-π/6)(A>0),当o
已知函数f(x)=asin(ωχ+π/3),g(x)=btan(ωχ-π/3)(ω>0)的最小正周期之和为3π/2,且f(π/2)=g(π/2f(π/4)+√3g(π/4)=1,求f(x)g(x)的解析式求f(x)和g(x)的解析式
已知F(x)=cos^4x-sin^4x+2根号3sinxcosx(1)把f(x)化成Asin(wx+g)的形式(2)求f(x)的最小正周期和值域