已知(2a)^x=a,log3a2a=y(3a为底数,2a为真数),求证:2^(1-xy)=3^(y-xy).
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 08:11:46
xN@_w-t"
7F,1E
oPj莋 /`ohdsoь
OEo !*DbSRf;R-D6v|[>!")5S*Ti=Qt~a$>6+vܺe;^6w݀;Y{NM*11*g7Sf%Xړ`*b6-WqAJɼQ5wiQ-ڤ)):8&8>'[nWKNjpvKU{'
已知(2a)^x=a,log3a2a=y(3a为底数,2a为真数),求证:2^(1-xy)=3^(y-xy).
已知(2a)^x=a,log3a2a=y(3a为底数,2a为真数),求证:2^(1-xy)=3^(y-xy).
已知(2a)^x=a,log3a2a=y(3a为底数,2a为真数),求证:2^(1-xy)=3^(y-xy).
这题有点麻烦,考你等量带换
首先根据(2a)^x=a,log3a2a=y
得到2^x=a^(1-x),3^y=2*a^(1-y)
2^(1-xy) / 3^(y-xy)=[2/2^(xy)]/[3^(y(1-y))]={2/a^[(1-x)y}/[2*a^(1-y)]^(1-x)=2/{a^(y-xy)*[2*a^(1-y)]^((1-x)=2^x/a^(1-x)=2^x/2^x=1
即2^(1-xy) / 3^(y-xy)=1,所以2^(1-xy)=3^(y-xy).
绝对正确,没有忽悠你.
谢谢采纳!