已知:a>0,b>0.求证:(a+b)(a^4+b^4)< =2(a^5+b^5)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 14:28:22
已知:a>0,b>0.求证:(a+b)(a^4+b^4)< =2(a^5+b^5)
x){}KhgdglcӋ@D$M88M[# 1մI*'S~ %"hJAPI$-nP&a R2@dX&6ȏgcOvjгΆ'bbgkջ;<;P

已知:a>0,b>0.求证:(a+b)(a^4+b^4)< =2(a^5+b^5)
已知:a>0,b>0.求证:(a+b)(a^4+b^4)< =2(a^5+b^5)

已知:a>0,b>0.求证:(a+b)(a^4+b^4)< =2(a^5+b^5)
2(a^5+b^5)-(a+b)(a^4+b^4)
=a^5+b^5-b*a^4-a*b^4
=a^4*(a-b)+b^4*(b-a)
=(a^4-b^4)(a-b)
=(a+b)(a-b)^2(a^2+b^2)
因为a>0;b>0,
所以(a+b)(a-b)^2(a^2+b^2)>=0
即证