5、如图,已知P是线段AB的黄金分割点,且PA>PB.若S1表示以PA为一边的正方形的面积,S¬2表示长为AB、宽为PB的矩形的面积,试比较S1与S2的大小,并说明理由.急
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 02:11:56
5、如图,已知P是线段AB的黄金分割点,且PA>PB.若S1表示以PA为一边的正方形的面积,S¬2表示长为AB、宽为PB的矩形的面积,试比较S1与S2的大小,并说明理由.急
5、如图,已知P是线段AB的黄金分割点,且PA>PB.若S1表示以PA为一边的正方形的面积,S¬2表示长为AB、宽为PB的矩形的面积,试比较S1与S2的大小,并说明理由.
急
5、如图,已知P是线段AB的黄金分割点,且PA>PB.若S1表示以PA为一边的正方形的面积,S¬2表示长为AB、宽为PB的矩形的面积,试比较S1与S2的大小,并说明理由.急
相等的
黄金分割的定义
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比.
PA/AB=PB/PA
PA*PA=AB*PB
S1=S2
考点:黄金分割.
分析:根据黄金分割的定义得到PA2=PB•AB,再利用正方形和矩形的面积公式有S1=PA2,S2=PB•AB,即可得到S1=S2.
∵P是线段AB的黄金分割点,且PA>PB,
∴PA2=PB•AB,
又∵S1表示PA为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,
∴S1=PA2,S2=P...
全部展开
考点:黄金分割.
分析:根据黄金分割的定义得到PA2=PB•AB,再利用正方形和矩形的面积公式有S1=PA2,S2=PB•AB,即可得到S1=S2.
∵P是线段AB的黄金分割点,且PA>PB,
∴PA2=PB•AB,
又∵S1表示PA为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,
∴S1=PA2,S2=PB•AB,
∴S1=S2.
故答案为=点评:本题考查了黄金分割的定义:一个点把一条线段分成较长线段和较短线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点.
收起
不妨设AB=1,P是线段AB的黄金分割点,且PA>PB,
则有:AP=(√5-1)/2
S1=AP²=(√5-1)²/4=(3-√5)/2
PB=1-(√5-1)/2=(3-√5)/2
S2=AB*PB=(3-√5)/2
所以,S1=S2
因为S1=S2,所以PA×PA=AB×pb,根据比例的基本性质PA分之AB=AB分之PB,所以P是黄金分割点,然后你懂得