数列{an}满足an+an+1=1/2(n属于N*),a1=-1/2,Sn是{an}的前n项和,则S2011=_

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 03:03:35
数列{an}满足an+an+1=1/2(n属于N*),a1=-1/2,Sn是{an}的前n项和,则S2011=_
xMj0l,L L,ݔ,\p~bHK7֍%9A { u.$s9j˴#,Cot}?V}Ebn=ipv!nta 4ef2DXϚe]bsTmMH4)8 1 ۃ 'U~H`| Ϩ+^՛RO_m jb찝_?n֜%w`q 2)~&="-̤x-&|(

数列{an}满足an+an+1=1/2(n属于N*),a1=-1/2,Sn是{an}的前n项和,则S2011=_
数列{an}满足an+an+1=1/2(n属于N*),a1=-1/2,Sn是{an}的前n项和,则S
2011=_

数列{an}满足an+an+1=1/2(n属于N*),a1=-1/2,Sn是{an}的前n项和,则S2011=_
a(n) + a(n+1)=1/2 =>任意连续两数是互补成0.5的互补数
a1=-0.5 =>a1的补数 a2=1
a3跟a1同为a2的补数=>a3=a1
如此类推,a(单数)=-0.5
相似地,a(双数)=1
s2011=(a1+...+a2011)+(a2+...+a2010)=1006*(-0.5)+1005*1=502