f(x+y,y/x)=x^2-y^2求f(x,y)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:58:52
f(x+y,y/x)=x^2-y^2求f(x,y)
xJ0_DŽ&4ɹY,aR4*]A<.{ZA,,q_LR K掹RVכ 2GˋD?T4U5CЈoW'IM-[:n.d2[~D.Mr;+}N43Hzf"]+"Mp`F!;mLRC

f(x+y,y/x)=x^2-y^2求f(x,y)
f(x+y,y/x)=x^2-y^2
求f(x,y)

f(x+y,y/x)=x^2-y^2求f(x,y)
令x+y=t,y/x=u
则y=xu代入x+y=t,得
x+xu=t
(1) u≠-1,即y≠-x,t≠0时,
x=t/(1+u)
y=xu=ut/(1+u)
∴f(t,u)=f(x+y,y/x)=x^2-y^2=[t/(1+u)]^2-[ut/(1+u)]^2
=t^2(1-u^2)/(1+u)^2=t^2(1-u)/(1+u) (t≠0,u≠-1)
∴f(x,y)=x^2(1-y)/(1+y) (x≠0,y≠-1)
(2) u=-1时,y=-x,t=0,则
f(0,-1)=x^2-y^2=x^2-(-x)^2=0
综上可知
f(x,y)=x^2(1-y)/(1+y) (y≠-1)
=0 (y=-1)