如图,在△ABC中,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M.求证△DEF是等腰三角形设∠FDE的度数为M,∠ACF的度数为N,试写出M和N的数量关系,并说明理由若△DEF是等边三角形,BF=4,CE=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:21:50
如图,在△ABC中,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M.求证△DEF是等腰三角形设∠FDE的度数为M,∠ACF的度数为N,试写出M和N的数量关系,并说明理由若△DEF是等边三角形,BF=4,CE=1
如图,在△ABC中,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M.
求证△DEF是等腰三角形
设∠FDE的度数为M,∠ACF的度数为N,试写出M和N的数量关系,并说明理由
若△DEF是等边三角形,BF=4,CE=1,试求△DEF的边长
若∠A=60,FM=4,MC=3,求BE长
如图,在△ABC中,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M.求证△DEF是等腰三角形设∠FDE的度数为M,∠ACF的度数为N,试写出M和N的数量关系,并说明理由若△DEF是等边三角形,BF=4,CE=1
证明 :因为D是中点 ,在直角三角形 bec中(直角三角形斜边中线定理)DF=1/2 BC,同上在直角三角形BEC中DE=1/2 BC,所以 DF=DE ,证得三角形 DEF 为等腰三角形.
2、M=2N
在直角三角形 AFC中 ,N=∠ACF=90-∠A.
M=∠FDE=180-∠EDC-∠FDB.因为∠EDC=2∠EBC(BD=DE),∠FDB=2∠FCD.所以M=∠FDE=180-2∠EBC-2∠FCD.
∠EMC=∠EBC+∠FCD=90-∠ACF(直角△EMC)=∠A.(N=∠ACF=90-∠A.)
故M=∠FDE=180-2∠EBC-2∠FCD=180-2∠A=2N
3、△DEF是等边三角形,M=60=2N.N=30.EC=1 EM=√3/3 MC=2√3/3.
△EMC与△FMB相似,∠FBE=30.FM=4√3/3.FC=2√3.在△FBC 中勾股定理 BC=2√7.
FD=DE=1/2BC=√7.
4、在△EBC 中勾股定理 EC=1 ,BC=2√7.BE=√27
∵BE⊥AC,CF⊥AB∴在△Rt△ABE中,∠A=60°那么∠ABE=30°在Rt△ACF中,∠A=60°那么∠ACF=30°∴在Rt△BFM中:∠FBM=∠ABE=30°那么BM=2FM=2×5=10厘米在Rt△CEM中:∠ECM=∠ACF=30°那么ME=1/2CM=1/2×4=2厘米∴BE=BM+ME=10+2=12厘米(利用30°所对直角边=斜边的一半求∵BE⊥AC,CF⊥AB∴在△Rt...
全部展开
∵BE⊥AC,CF⊥AB∴在△Rt△ABE中,∠A=60°那么∠ABE=30°在Rt△ACF中,∠A=60°那么∠ACF=30°∴在Rt△BFM中:∠FBM=∠ABE=30°那么BM=2FM=2×5=10厘米在Rt△CEM中:∠ECM=∠ACF=30°那么ME=1/2CM=1/2×4=2厘米∴BE=BM+ME=10+2=12厘米(利用30°所对直角边=斜边的一半求
收起