如图所示,AB为圆O的直径,C为圆O上一点,AD和过C点的切线相交于点D,和圆O相交于点E,且AC平分∠DAB(1)求证:∠ADC=90°;(2)若AB=2r,AD=8/5r,求CD.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 19:31:47
如图所示,AB为圆O的直径,C为圆O上一点,AD和过C点的切线相交于点D,和圆O相交于点E,且AC平分∠DAB(1)求证:∠ADC=90°;(2)若AB=2r,AD=8/5r,求CD.
如图所示,AB为圆O的直径,C为圆O上一点,AD和过C点的切线相交于点D,和圆O相交于点E,且AC平分∠DAB
(1)求证:∠ADC=90°;
(2)若AB=2r,AD=8/5r,求CD.
如图所示,AB为圆O的直径,C为圆O上一点,AD和过C点的切线相交于点D,和圆O相交于点E,且AC平分∠DAB(1)求证:∠ADC=90°;(2)若AB=2r,AD=8/5r,求CD.
1、连接BC
∵AB是直径
∴∠ACB=90°
∵CD是圆切线
∴∠DCA=∠B
∵AC平分∠DAB
∴∠DAC=∠BAC
∴△ADC∽△ACB
∴∠ADC=∠ACB=90°
2、∵△ADC∽△ACB
∴AD/AC=AC/AB ,AD/AC=DC/BC
AC²=AB×AD=16/5r² ,AC=(4√5/5)r
∴BC²=AB²-AC²=4r²-16/5r²=4/5r²
BC=(2√5/5)r
∴CD=AD×BC/AC=(8/5)r×(2√5/5)r/(4√5/5)r=(4/5)r
(1) 连接OC
AC平分∠DAB
则 ∠DAC=∠CAB=∠ACO
CD为过C点的圆切线
OC⊥CD
∠ACO+∠ACD=90°
即 ∠DAC+∠ACD=90°
∴ ∠ADC=90°
(2) ∠DAC=∠CAB
∠ADC=∠ACB=90°
全部展开
(1) 连接OC
AC平分∠DAB
则 ∠DAC=∠CAB=∠ACO
CD为过C点的圆切线
OC⊥CD
∠ACO+∠ACD=90°
即 ∠DAC+∠ACD=90°
∴ ∠ADC=90°
(2) ∠DAC=∠CAB
∠ADC=∠ACB=90°
△ACD∽△ABC
AB/AC=AC/AD
AC^2=AB*AD=2r*(8/5)r=(16/5)r^2
CD^2=AC^2-CD^2=(16/25) r^2
CD=4r/5
收起