已知集合A={x丨f(x)=x},B={x丨f[f(x)]=x},其中函数f(x)=x^2+ax+b(a、b为实数)若A是单元素集,则A、B之间的关系是?答案上的是A=B,求高手全体解题思路..

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 04:12:19
已知集合A={x丨f(x)=x},B={x丨f[f(x)]=x},其中函数f(x)=x^2+ax+b(a、b为实数)若A是单元素集,则A、B之间的关系是?答案上的是A=B,求高手全体解题思路..
xUNA& E/mR>&ccZ&t(B"TZU(,BEgf'~wfv[PlMmgιsoɏ;Oa)sj@\V_tI"enVH;oQ#;:2ȥEZHZZ8SJ<@Dp^Jl<Γ ؅u@ tmxT$V꨿i}\:9_dXs:݇+gqz@:Y̒0^-IIHhȍͪT227vCYoRV@ HG6dLc+##MYP/MVɇYO^<<=~"z 荳d'  Q6pH2{̗4Ȉ-8w\~a}oB1R$e,[.{L^zuZc !, tND_s_  u|Z߈a*7q}O&zgf\xKNߖy xI D].xB)(NQóTe*Eu&HW68!jn搹4thJ;u>or0S`'ѤTGm3jhƳۣ74!>C "u/}3o p" t w>l\kKIҷ7؂M#b7ewYoʛB=zA6LRٯ]|FVs'#6B] S+HNy pv͒#cuq

已知集合A={x丨f(x)=x},B={x丨f[f(x)]=x},其中函数f(x)=x^2+ax+b(a、b为实数)若A是单元素集,则A、B之间的关系是?答案上的是A=B,求高手全体解题思路..
已知集合A={x丨f(x)=x},B={x丨f[f(x)]=x},其中函数f(x)=x^2+ax+b(a、b为实数)
若A是单元素集,则A、B之间的关系是?
答案上的是A=B,求高手全体解题思路..

已知集合A={x丨f(x)=x},B={x丨f[f(x)]=x},其中函数f(x)=x^2+ax+b(a、b为实数)若A是单元素集,则A、B之间的关系是?答案上的是A=B,求高手全体解题思路..
A={x丨f(x)=x},)对于A中任意元素x,都满足x=f(x),所以x=f(x)=f[f(x)]
又因为是单元素集,所以两个集合相等

解法一:
设A={t},为单元素集合,则二次方程应满足f(x)-x=(x-t)²=0
(只有唯一解,故该二次方程可变换为完全平方),
变换上述等式,有f(x)=(x-t)²+x
对集合B中的元素x,满足f[f(x)]=x,代入上式,有:
x=[f(x)-t]²+f(x)
=[(x-t)²+x-t]²+...

全部展开

解法一:
设A={t},为单元素集合,则二次方程应满足f(x)-x=(x-t)²=0
(只有唯一解,故该二次方程可变换为完全平方),
变换上述等式,有f(x)=(x-t)²+x
对集合B中的元素x,满足f[f(x)]=x,代入上式,有:
x=[f(x)-t]²+f(x)
=[(x-t)²+x-t]²+(x-t)²+x
即:
[(x-t)²+(x-t)]²+(x-t)²=0 (*)

[(x-t)²+(x-t)]²>=0
(x-t)²>=0
所以方程(*)只有x=t一个解
即B={t}=A
解法二:
设A={t},为单元素集合
故二次方程f(x)=x只有一个根,令y=f(x)-x=(x-t)²≥0(当且仅当x=t时等号成立)
则对于f(f(x))-x=[f(f(x))-f(x)]+[f(x)-x]≥0(同样,当且仅当x=t时等号成立)
故在已知A={t},为单元素集合的条件下,f(f(x))=x只有一个解t,即B=A

收起

因为集合A为单元素,所以将f(x)带入A中解a=+-b+1,在将该解再代一次,可解ab的两个值。同理解B即可得A=B

解析:依题意,得
设x0∈A
∵A={x|f(x0)=x0}
∴f(x0)=x0对任意x0∈R恒成立
故B={x|f[f(x0)]=x0}={x|f(x0)=x0}=A
注:仅供参考!