1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 03:08:21
1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
原式=(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+(1/5-1/6)+(1/6-1/7)+(1/7-1/8)+(1/8-1/9)+(1/9-1/10)
=1/2-1/10
=2/5
1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/9
=(1/2 乘以1/3)+(1/3乘以1/4)+(1/4乘以1/5)+(1/5乘以1/6)+(1/6乘以1/7)+(1/7乘以1/8)+(1/8乘以1/9)+(1/9乘以1/10)
=(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+(1/5-1/6)+(1/6-1/7)+(1/7-1/8)+(1/8-1/9)+(1/9-1/10)
=1/2-1/10
=2/5
我知道!!!!!!!!
看好了!!!"*"带表乘~~~~!!!
原式=1/2*3+1/3*4+1/4*5+....+1/8*9+1/9*10
=1/2+1/3-1/3+1/4-1/4+......-1/8+1/8-1/9+1/9-1/10
=1/2-1/10
=4/5
肯定对!!!!
1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
=1/2×3+1/3×4+1/4×5+……+1/9×10
= 1/2-1/3+1/3-1/4+1/4-1/5+……+1/9-1/10
=1/2-1/10
=2/5
先写出通项公式1/(n+1)(n+2)
然后裂项1/(n+1)(n+2) = 1/(n+1) - 1/(n+2)
所以原式=1/2-1/3+1/3-1+4 … 1/9-1/10=1/2-1/10=2/5
=(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+(1/5-1/6)+(1/6-1/7)+(1/7-1/8)+(1/8-1/9)+(1/9-1/10) =1/2-1/10 =2/5
=2/5
原式=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
=1/2-1/10
=2/5
=2/5
利用拆分原理,可知道1/6=1/2-1/3;1/12=1/3-1/4;由此可得拆分算式:
原式=1/2-1/3+1/3-1/4...+1/9-1/10(加减抵消)
=1/2-1/10
=8/20=2/5