已知f(x)=x^2+(2m-1)x-1,若当x属于(1,2)时,f(x)>0,求m的取值范围.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 15:15:08
已知f(x)=x^2+(2m-1)x-1,若当x属于(1,2)时,f(x)>0,求m的取值范围.
xRJ@ 2d-m ߦ]KW-%+Ԣ>tAJkݬ˒IfUD|Ir=̹whߟ0^!-%CiѷPm©ݿGu}ѽ[zMcy}M;4^=m?m|{wmVgkO$ \#(sCbo]ߘpϓdKg+Tے;`\ dP0|cԒR<ӫH*Gf6Q4;0[,eA2K:tW{㪜qԷ#

已知f(x)=x^2+(2m-1)x-1,若当x属于(1,2)时,f(x)>0,求m的取值范围.
已知f(x)=x^2+(2m-1)x-1,若当x属于(1,2)时,f(x)>0,求m的取值范围.

已知f(x)=x^2+(2m-1)x-1,若当x属于(1,2)时,f(x)>0,求m的取值范围.
f(x)是连续的,要使xE(1,2)时,f(x)>0,只需f(x)的最小值>0 (xE(1,2))
f(x)=(x+(2m-1)/2)^2-(4m^2-4m+1)/4-1
f(x)=(x+(2m-1)/2)^2+(-m^2-m-5/4)
当x=(1-2m)/2时,取最小值,
当(1-2m)/2E(1,2)时
即:(1-2m)E(2,4)
(-2m)E(1,3)
mE(-3/2,-1/2)时,最小值为:(-m^2-m-5/4)>0
m^2+m+5/40 m>1/2
f(2)>0 4m+1>0 m>-1/4
综合m>1/2,再综合m>=-1/2 or m1/2

f(x)=x²+(2m-1)x-1,对称轴为x=-(2m-1)/2=1/2-m
f(1)=1+2m-1-1=2m-1,f(2)=4+2(2m-1)-1=4m+1
1,1/2-m≥2,且f(2)≥0,解得:m∈∅
2,1/2-m≤1,且f(1)≥0,解得:m≥1/2
所以m≥1/2,即m的取值范围为[1/2,+∞)