∫(1+x^3)cosx/1+sin^2 xdx 积分上限为π/2 下限为-π/2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:33:41
xN@_e e[ .ܐI*l ]-BIS0+gtTVB0ds~s3r.=ĐӇUClJBjFE}*v饅GIv\E|)?:Oe*̈e/H
_7unfH9mwS>5Ax܌&o{on朒Ol?\eExꅜM× &*,f E^yDŮ9TFѩӅV1QVY~y%m`kӆTlk{'HFTe<Cg%WCU:^3˨qmCj40Y
∫(1+x^3)cosx/1+sin^2 xdx 积分上限为π/2 下限为-π/2
∫(1+x^3)cosx/1+sin^2 xdx 积分上限为π/2 下限为-π/2
∫(1+x^3)cosx/1+sin^2 xdx 积分上限为π/2 下限为-π/2
∫[-π/2,π/2 ](1+x^3)cosx/(1+sin^2 x)dx
=∫[-π/2,π/2 ]cosx/(1+sin^2 x)dx +∫[-π/2,π/2 ]x^3cosx/(1+sin^2 x)dx (注意后面一项是奇函数,等于0)
=∫[-π/2,π/2 ]cosx/(1+sin^2 x)dx
=∫[-π/2,π/2 ]1/(1+sin^2 x)dsinx
=arctan(sinx)[-π/2,π/2 ]
=2arctan1
=π/2
把积分拆成-π/2到0 和 0到π/2
然后任取其中一个做t=-x的代换
然后加起来就可以把X^3COSX约掉了
剩下分子只有2COSX了。。。把cosxdx=dsinx代入即可
∫(cosx/1+sin^2x)dx
∫cosx/(1+4sin^2x)
化简(sin^2 x/sin x-cosx)-(sin x+cosx/tan^2 x-1)
(sin^x/sinx-cosx)-sinx+cosx/tan^2x-1
求下列函数的值域:1)sinx+cosx;2)sin^2 x-cosx+1;3)cosx/(2cosx+1)
sin^2x根号下(1+cosx)/(1-cosx)
cosx-sinx/1+sin^2x不定积分
cosx- sin x= -1/2,
cosx/√1+sin^2x dx
y=sin^2x(1-cosx/1+cosx-1+cosx/1-cosx)的周期
求不定积分∫sin(2x)/(1+cosx)dx
∫cosx/(1+4sin^2x)dx
3sinx-2cosx=0 (1)(cosx-sinx)/(cosx+sinx)+(cosx+sinx)/(cosx-sinx) (2)sin^2 x-2sinxcosx+4cos^2 x
证明成立:[cos(3x)-sin(3x)]/(cosx+sinx)=1-2sin(2x).
求证 sin^2x/(sinx-cosx)-(sinx+cosx)/tan^2 x-1=sinx+cosx
- ∫(0->π/2) (1+cosx)²sin³x(1+2cosx)dx
(cosx)^2-(cosy)^2=1/3求sin(x+y)*sin(x-y).
若(sin^2x+4)/cosx+1=2 则(cosx+3)(sinx+1)=