基本不等式 a-(1/a)(a>0)的最小值?怎么求?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 00:48:25
基本不等式 a-(1/a)(a>0)的最小值?怎么求?
xUNA~ML 1m* ĠDƻmڅe*5B[DK[.uU_ovR7+ovgΜsDfcdO52uIwt8(wL 9Y^NYfg'UO=XoSxPSJmTaw'>$u嵾Ě{`Pm$zV~6lsZaقs}m:Щ-A|ۅ8aj]N ʗy:)ʌJqN& _ 1n} knzm0&uᑨ&G=Ė)sH/c^o\o q)?ԄBD;{V 1ep( ƩCt,myG1#Β=@ZVuwA r;*(_{LmNjmb5!ꚽSkA,aGM 5Jߪ~e.fH7u{xr&vz]0x0~<0@l|v" \Is Yzպ8ġ 'u-!Wq?s'wKy y8./ټݹK_<3A幛f ś Z~ Xw]ɨ >%0xg ۝XNXNE[͓1$^ qoP

基本不等式 a-(1/a)(a>0)的最小值?怎么求?
基本不等式 a-(1/a)(a>0)的最小值?
怎么求?

基本不等式 a-(1/a)(a>0)的最小值?怎么求?
y=a-1/a y地导数=1+1/a²>0 没有最小值 不知道题对不

由于a无限接近于0时,-1/a 趋于负无穷大,所以a-1/a最小值不存在,或者说最小值是﹣∞。
高一学的基本不等式是:a+1/a≥2 (a>0) 当a=1/a,即a=1时,取等号,a+1/a=2
(√a-1/√a)²≥0,(√a)²-2√a*1/√a+(1/√a)²≥0,a+1/a≥2
a²+b²≥2ab 由(a-b)&#...

全部展开

由于a无限接近于0时,-1/a 趋于负无穷大,所以a-1/a最小值不存在,或者说最小值是﹣∞。
高一学的基本不等式是:a+1/a≥2 (a>0) 当a=1/a,即a=1时,取等号,a+1/a=2
(√a-1/√a)²≥0,(√a)²-2√a*1/√a+(1/√a)²≥0,a+1/a≥2
a²+b²≥2ab 由(a-b)²≥0 转换得到
a+b≥2√ab 由(√a-√b)≥0 转换得到,这里要求 a、b> 0 因为要开方。即所谓正数的“正”
求a+b的最小值时,要求ab为常量,求ab最大值时,要求a+b为常量。即所谓的确定的值的“定”
一正二定三相等(相等时取等号)
有关基本不等式的各种变形、证明及其应用参见百度百科名片:基本不等式
http://baike.baidu.com/view/1075434.htm

收起

高一没有学过导数
我们用一元二次方程的方法来解
设a-1/a=t
a²-1=ta
a²-ta-1=0要使方程有根
需要让△≥0即
t²+4≥0说明t为任意数都成立。那么它没有最值。
楼上的方法是好,但是高一学过没?我高一是没有学过极限,导数

a无限趋近零的时候 最小值 近无穷 要怎么求?