已知二次函数y=mx²+(m-3)x-3(m>0)(1)假设这条抛物线与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且AB=4,圆M过A、B、C三点,求扇形MAC的面积S(2)在(1)的条件下,抛物线上是否存

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 11:07:35
已知二次函数y=mx²+(m-3)x-3(m>0)(1)假设这条抛物线与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且AB=4,圆M过A、B、C三点,求扇形MAC的面积S(2)在(1)的条件下,抛物线上是否存
xV_OV*S+{c!1MH1R>N'dk&vEmEPJRRH,6O|8[ywwιǎoFzgR$z#̖xѻEpJ:?e}ԜY'B>k7FmÚ8ĉkl?\Fmշvu\^'PL0c D0{}P+7.ns}ތ䠒oK'M߯,|μD.!]thf3RN>g3D:ⳖZUezqY`hjdjJz&zŀꁵʩ #+eJ4uo?npЖ}!^ 3Th.w4Jp|L虶:GPKodecө0uq/s)͇k cO=O6 9^dW_nw1 U۱vvkmUH}i|a>oа2sWe GђN xf|ROW\|ZwP@<`PgXS<@(_z'_K燏E6P% zi.[ s

已知二次函数y=mx²+(m-3)x-3(m>0)(1)假设这条抛物线与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且AB=4,圆M过A、B、C三点,求扇形MAC的面积S(2)在(1)的条件下,抛物线上是否存
已知二次函数y=mx²+(m-3)x-3(m>0)
(1)假设这条抛物线与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且AB=4,圆M过A、B、C三点,求扇形MAC的面积S
(2)在(1)的条件下,抛物线上是否存在点P,是△PBD(PD⊥x轴,垂足为D)被直线BC分为面积比为1:2的两部分?若存在,求出点P得坐标;若不存在,请说明理由.

已知二次函数y=mx²+(m-3)x-3(m>0)(1)假设这条抛物线与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且AB=4,圆M过A、B、C三点,求扇形MAC的面积S(2)在(1)的条件下,抛物线上是否存

(1) y=mx²+(m-3)x-3 = 0, △=(m-3)² +12m = (m+3)²

x = [3-m ±(m+3)]/(2m)

x1 = -1, x2 = 3/m

AB=4, 3/m +1 = 4,m = 2

y = x² -2x -3

A(-1, 0), B(0, 3), C(0, -3)

抛物线的对称轴为x = (3-1)/2 = 1

显然M在对称轴上,设其坐标为M(1, a)

|MA|² = |MC|² 

(1+1)² + a² = 1 + (a+3)²

a = -1

M(1, -1)

圆半径为√5

MA 和MC的斜率分别为:

kMA = (-1 -0)/(1+1) = -1/2

kMC = (-1+3)/(1-0) = 2

kMA*kMC = -1

MA 和MC垂直.

扇形MAC的面积S为圆面积的1/4,S= π(√5)²/4 = 5π/4

(2)设P(p, p² -2p -3). 要使△PBD被直线BC分为面积比为1:2的两部分,只需线段PD被BC分为1:2两段(设交点为E),因为底BD相同.

BC的方程为x/3 - y/3 = 1, y = x-3

E的纵坐标为p-3

第(i)种可能:DE:EP= 1:2

此时E的纵坐标为P纵坐标的1/3

3(p -3) = p² -2p -3

p = 2, p-3(p² -2p -3)

P(2,-3)

第(ii)种可能:DE:EP= 2:1

此时E的纵坐标为P纵坐标的2/3

p-3 = (2/3)(p² -2p -3)

p = 1/2, p = 3(与B重和,舍去)

P(1/2, -15/4)

此时E的纵坐标为P纵坐标的1/3 3(p -3) = p -2p -3 p = 2, 二次函数y=mx^2+(m-3)x-3(m>0) x1+x2=(3-m)/m.(x1+x2