设α∈(0,π/3),β(π/6,π/2),且α,β满足5√3sinα+5cosα=8√2sinβ+√6cosβ =2 求cos(α+β )设α∈(0,π/3),β(π/6,π/2),且α,β满足53sinα+5cosα=8 /2sinβ+/6cosβ =2 求cos(α+β )

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:30:47
设α∈(0,π/3),β(π/6,π/2),且α,β满足5√3sinα+5cosα=8√2sinβ+√6cosβ =2 求cos(α+β )设α∈(0,π/3),β(π/6,π/2),且α,β满足53sinα+5cosα=8 /2sinβ+/6cosβ =2 求cos(α+β )
xSN@.g`Peg 1i\2ihB' ⪿3: 3ޞs;I}R7_ƬI$"phͦ4 򯛣ANx 6"6Z™@#n" l{x~g(> v?0oӰžI]ँgQl1Y 値@9y|SW٦`x!&jl!YQb\+VeuqQғQ~T*NsXT'BZ^=GFݱ`Б{˶T%ײ>dM]"mq $}Op]#6O(1TJfKVDࢋLz"-0=ɨt('Z*|~6KË4g,U; ;U\W,JzUt~|R*

设α∈(0,π/3),β(π/6,π/2),且α,β满足5√3sinα+5cosα=8√2sinβ+√6cosβ =2 求cos(α+β )设α∈(0,π/3),β(π/6,π/2),且α,β满足53sinα+5cosα=8 /2sinβ+/6cosβ =2 求cos(α+β )
设α∈(0,π/3),β(π/6,π/2),且α,β满足5√3sinα+5cosα=8√2sinβ+√6cosβ =2 求cos(α+β )
设α∈(0,π/3),β(π/6,π/2),且α,β满足53sinα+5cosα=8 /2sinβ+/6cosβ =2 求cos(α+β )

设α∈(0,π/3),β(π/6,π/2),且α,β满足5√3sinα+5cosα=8√2sinβ+√6cosβ =2 求cos(α+β )设α∈(0,π/3),β(π/6,π/2),且α,β满足53sinα+5cosα=8 /2sinβ+/6cosβ =2 求cos(α+β )
由5√3sinα+5cosα=8,(√3/2)*sinα+(1/2)*cosα=4/5,sin(α+π/6)=4/5,cos(α+π/6)=3/5;
由√2sinβ+√6cosβ=2,(1/2)*sinβ+(√3/2)cosβ=√2/2,sin(β-π/6)=√2/2,cos(β-π/6)=√2/2;
所以 cos(α+β)=cos[(α+π/6)+(β-π/6)]=cos(α+π/6)cos(β-π/6)-sin(α+π/6)sin(β-π/6)
=(3/5)*(√2/2)-(4/5)*(√2/2)=(1/5)*(√2/2)=√2/10;

由√2sinβ+√6cosβ=2得
2√2(1/2*sinβ+√3/2*cosβ)=2
sin(β+π/3)=√2/2
β∈(π/6,π/2)则
β∈(π/2,5π/6)
所以cos(β+π/3)=-√2/2
所以cos(α+β)=sin[π/2+(α+β)]
=sin[(α+π/6)+(β+π/3)]
=sin(α+π/6)coc(...

全部展开

由√2sinβ+√6cosβ=2得
2√2(1/2*sinβ+√3/2*cosβ)=2
sin(β+π/3)=√2/2
β∈(π/6,π/2)则
β∈(π/2,5π/6)
所以cos(β+π/3)=-√2/2
所以cos(α+β)=sin[π/2+(α+β)]
=sin[(α+π/6)+(β+π/3)]
=sin(α+π/6)coc(β+π/3)+Cos(α+π/6 )sin(β+π/3)
=4/5*(-√2/2)+3/5*√2/2
=-√2/10

收起