配方求顶点y=2x^-3x-4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:46:21
配方求顶点y=2x^-3x-4
x){lg^.igQEqMR>Y;B\ #k&TMXRLDS Ta$ko Qkbo q2%`PTJ 1l0nL x* OԃFFFF@'"YgÓK!z:w³Ovz8{:qZbQ4(@~Bq=Ն{zvMS

配方求顶点y=2x^-3x-4
配方求顶点y=2x^-3x-4

配方求顶点y=2x^-3x-4
y=2(x²-3x/2)-4
=2(x²-3x/2+9/16-9/16)-4
=2(x²-3x/2+9/16)-9/8-4
=2(x-3/4)²+(-41/8)
顶点
(3/4,-41/8)

y=2(x-3/4)^2-4-9/8

y=2x^2-3x-4=2(x^2-3x/2-2)=2[(x-3/4)^2-25/16]=2(x-3/4)^2-25/8
所以顶点坐标为(3/4,-25/8)

y=2x^-3x-4=2(x^2-3/2x+9/16)-41/8=2(x-3/4)^2-41/8顶点坐标为(3/4,-41/8)