高二数学题函数f﹙x﹚=㏑x-ax ﹙a∈R﹚若f﹙x﹚无零点,求a的取值范围.答案为a>1/e.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 04:07:06
高二数学题函数f﹙x﹚=㏑x-ax ﹙a∈R﹚若f﹙x﹚无零点,求a的取值范围.答案为a>1/e.
xUMSP+.u.tFV㴛tE$(l0)E>/XzKe3xɽsνy7%oq9:/Qfsr=5}4߻QͶeKc'd%[8Lvuil[(mt#RgH)?h{54J6f5?L0?mǼDȤN1Ь.Pߤr^%pf LnjLե&^p&x-WK zd,e*{`QBW1(~N<+1cϤ2GwG m=L0.@M{J<ȺB DtSOn .kwqIXj ի~5 O(!YlVM|vT)n kSeΡ d}w]ޣ⾠1!8AǦ\EҴMwLC)ISA1Ö۹Ftc Nx ?|'Ͷۮ}>8|9d&!{ckJ_[E\c\ӱ;d~d} iw48' 56J+^ust\ {xYCfFv֓481lȌD"LQꊾm_yPʾq芦+4|J+"BSL84ºs;y<)[H= +d~P"@gA2w,GY%x.h>~]U

高二数学题函数f﹙x﹚=㏑x-ax ﹙a∈R﹚若f﹙x﹚无零点,求a的取值范围.答案为a>1/e.
高二数学题函数f﹙x﹚=㏑x-ax ﹙a∈R﹚
若f﹙x﹚无零点,求a的取值范围.答案为a>1/e.

高二数学题函数f﹙x﹚=㏑x-ax ﹙a∈R﹚若f﹙x﹚无零点,求a的取值范围.答案为a>1/e.
f﹙x﹚=㏑x-ax ﹙x>0,a∈R﹚
y‘=(1/x)-a,a∈R,x>0
①当a≤0时,f(x)在(0,+∞)单调,必有零点,舍去
②a>0时,令y’=0,x=1/a
所以y在(0,1/a)增,(1/a,+∞)减,
所以函数f(x)存在最大值,所以最大值<0,则函数无零点,f(1/a)<0,解得a>1/e

f(x)求导 令导数等于0得x=1/a
则其为转折点 f(1/a)=ln(1/a)-1,令其等于0得a=1/e
当a>1/e则无零点

易知f(x)定义域为x>0,且函数在定义域内连续,当x从右边趋向于0时,f(x)<0
所以,在f(x)在定义域内连续的情况下要使f(x)无零点,必须使f(x)在整个定义域内都小于0,否则f(x)必然会穿过x轴,即出现等于0的情况。
所以令lnx-ax<0得lnxax与lnx导数与函数值都...

全部展开

易知f(x)定义域为x>0,且函数在定义域内连续,当x从右边趋向于0时,f(x)<0
所以,在f(x)在定义域内连续的情况下要使f(x)无零点,必须使f(x)在整个定义域内都小于0,否则f(x)必然会穿过x轴,即出现等于0的情况。
所以令lnx-ax<0得lnxax与lnx导数与函数值都相等,即a=1/x,ax=lnx,可算出x=e,a=1/e.因为f(x)只能小于而不能等于0,所以直线ax的斜率a必须大于1/e.

收起

对A进行参变分离,A=LNX/X,看成Y=A与Y=lnx/x两个函数,对Y=lnx/xx求导,搞到极大值即最大值在X=e上取到,且为1/e,所以Y=lnx/x的值域为【负无穷,1/e】,也即Y=A不在值域即可,所以A>1/e.

高二数学题函数f﹙x﹚=㏑x-ax ﹙a∈R﹚若f﹙x﹚无零点,求a的取值范围.答案为a>1/e. 数学题函数f(x)已知f(x)=x的平方+ax+a(a 高二一道简单的数学题,急!已知函数f(x)=x³+ax²+bx+c 5分 已知函数f(x)高二一道简单的数学题,急!已知函数f(x)=x³+ax²+bx+c 5分已知函数f(x)=x³+ax²+bx+c在x0处取得极小值-5,其导函数y 高二导数f(x)=ax-lnx1若f(x)在定义域上为减函数,求a的取值范围2若f'(x) 高一函数的单调性的数学题1.已知 f(x)=9x^2-6x+5 则f(x)=? ( ^2是二平方的意思)2.已知f(x)=ax+1/x+2(a不等于1/2),讨论x属于(-2,正无限)时,f(x)的增减性 高一数学题 倒 暑假作业都这么难一 已知函数f(x)=ax^2-1(a∈R, x∈R).设集合A={x|f(x)=x},集合B={x|f(f(x))=x},且A=B≠空集,求实数a的取值范围二 设函数f(x)=㏒3 (mx^2+8x+n)/(x^2+1)的定义域为 高二数学题(导数与函数)f(x)=(x²+ax+a)×e^x(a≤2 ,x∈R)(1)a=1时 f(x)的单调区间(2)是否存在a ,使f(x)极大值=3 ?①存在 ☞ 求出a值②不存在 ☞ 说明理由-------------------------------------------- 高二数学题.悬赏二十分设函数f(x)=x^3-3ax^2+3bx的图象与直线12x+y-1=0相切于点(1,-11). 一,求a,b的值;二,讨论函数f(x)的单调性. (高二数学题)设函数f(x)=1nx-2ax. (1)若函数y=f(x)的图像在点(1,f(1))处的切线为直线l,且直线l与圆(x...(高二数学题)设函数f(x)=1nx-2ax.(1)若函数y=f(x)的图像在点(1,f(1))处的切线为直线l,且直线l与圆(x+1)^ 一道高二不等式``有关不等式数学题 给定函数F(x)=ax^2+bx+c以及G(x)=cx^2+bx+a,其中|F(0)|≤1,|F(1)|≤1,|F(-1)|≤1,求证:对于|x|≤1,|F(x)|≤5/4,|G(x)|≤2 已知函数f(x)=ax+㏑x(a 已知函数f(x)=1-x/ax+lnx(a为常数)求f(x)的导数数学题 高一数学题已知函数f(x)=x/ax+b(a、b为常数,且a≠0)满足f(2)=1,f(x)=x有唯一解,求函数y=f(x)已知函数f(x)=x/ax+b(a、b为常数,且a≠0)满足f(2)=1,f(x)=x有唯一解,求函数y=f(x)的 (高一数学题)求二次函数f(x)=x2+ax=a-1在区间【-1,3】上的最小值二次函数f(x)=x2+ax+a-1【-1,3】上的最小值 高一数学题求二次函数f(x)=x^2+4ax+a^2-1在区间[-4,1]上的最大值和最小值 高一数学题f(x)=ax+1/x+2在(-2,+∞)上是增函数,则a的取值范围是 高一数学题f(x)=ax+1/x+2在(-2,+∞)上是增函数,则a的取值范围是 考试中数学题 已知函数f(x)=lnx-a的二次方x的二次方+ax(a闭区间R) 一,求a=1时,证明函数f(x)只有一个零点 二,求函数f(x)的极值点和相应的极值f(x)=1nx-a的二次方x的二次方+ax (a闭区间R)