已知关于x的方程x²+p1+q1=0与x²+p2+q2=0求证:当p1p2=2(q1+q2)时,这两个方程中至少有一个方程有实根
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:42:17
x͑J0F]]BQ2h@R&JdQ[b6j2w}Vo/K''AXgO3>ќ>;M?L.B~{\][;:
%jdz^0PkV}ӷ
F4+`sp\z~ed"sO (XG)NWNaˬ;ǠjCq$1a ^,vlMp`ӊ͢!YDpA|0e\pV%A9%>k$-(
ccW_.{
已知关于x的方程x²+p1+q1=0与x²+p2+q2=0求证:当p1p2=2(q1+q2)时,这两个方程中至少有一个方程有实根
已知关于x的方程x²+p1+q1=0与x²+p2+q2=0
求证:当p1p2=2(q1+q2)时,这两个方程中至少有一个方程有实根
已知关于x的方程x²+p1+q1=0与x²+p2+q2=0求证:当p1p2=2(q1+q2)时,这两个方程中至少有一个方程有实根
假设两方程均无实根,即p1^2<4q1,p2^2<4q2
两不等式相乘,得p1^2*p2^2<16q1*q2
由不等式(a+b)^2≥4ab,则16q1*q2≤4(q1+q2)^2
p1^2*p2^2<4(q1+q2)^2
p1*p2<2(q1+q2)
与p1p2=2(q1+q2)矛盾
所以两个方程中至少有一个方程有实根.