Let R be an arbitrary ring and (n属于Z+) .If the set Sn is defined bySn = {(a 属于 R) l (n^k) *a = 0 for some k > 0}determine whether Sn is a subring of R.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 04:54:56
Let R be an arbitrary ring and (n属于Z+) .If the set Sn is defined bySn = {(a 属于 R) l (n^k) *a = 0 for some k > 0}determine whether Sn is a subring of R.
xՒQkPǿAn˻SpCSWboKR!LMǖn+e:CIE&wԯ7Ql /s疛& 6j-`}T`}8IGӤ Z76B́YQk;d-P".AaӨ` ͊2:*u\А*he^R﯀eR/4?4s4VKVb|q]*2^^kI-)b2Z*gZ<.ҢP%Ǐ $p;>o|/`{;؄W$opK\ؙ i=0A||).?X;z]Gޯk >cg]

Let R be an arbitrary ring and (n属于Z+) .If the set Sn is defined bySn = {(a 属于 R) l (n^k) *a = 0 for some k > 0}determine whether Sn is a subring of R.
Let R be an arbitrary ring and (n属于Z+) .If the set Sn is defined by
Sn = {(a 属于 R) l (n^k) *a = 0 for some k > 0}
determine whether Sn is a subring of R.

Let R be an arbitrary ring and (n属于Z+) .If the set Sn is defined bySn = {(a 属于 R) l (n^k) *a = 0 for some k > 0}determine whether Sn is a subring of R.
答案:正确
∀a,b∈Sn,∃k1,k2>0,(n^k1) *a = 0,(n^k2)*b= 0,令k=max(k1,k2),则 (n^k) *a = 0,(n^k) *b= 0,于是(n^k) *(a-b)= 0,
故 a-b∈Sn,故Sn is a subring of R..

令R是任意一个环,且n属于Z+。如果Sn定义为:Sn = {(a 属于 R) l 对某个k > 0有 (n^k) *a = 0 },判断Sn是否是R上的一个子环。
这个结论是对的,您可以根据半环的定义去验证。

任意圆R(n属于Z+),假设Sn为确定值Sn = {(a 属于 R) l (n^k) *a = 0 时 k > 0},证明Sn是否是R的子圆。