设Xn=(1+1/2)(1+1/4)…(1+1/2^2n),求Xn的极限(n趋近于无穷)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:43:43
设Xn=(1+1/2)(1+1/4)…(1+1/2^2n),求Xn的极限(n趋近于无穷)
x){n_D&2|԰PQγMyg

设Xn=(1+1/2)(1+1/4)…(1+1/2^2n),求Xn的极限(n趋近于无穷)
设Xn=(1+1/2)(1+1/4)…(1+1/2^2n),求Xn的极限(n趋近于无穷)

设Xn=(1+1/2)(1+1/4)…(1+1/2^2n),求Xn的极限(n趋近于无穷)
Xn = (1+1/2)(1+1/4).(1+1/2^(2n))
所以
(1-1/2)Xn = (1-1/2)(1+1/2)(1+1/4).(1+1/2^(2n))
所以
(1-1/2)Xn = (1-1/4)(1+1/4).(1+1/2^(2n))=(1-1/16)...(1+1/2^(2n))
=(1-1/2^(2n))(1+1/2^(2n)) = 1-1/4^(2n)
所以得到
Xn = 2(1-1/4^(2n)) -> 2