数学小知识或小故事 50字左右100字以内

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 07:07:51
数学小知识或小故事 50字左右100字以内
x[Ko#Ir+\ЂZԣ[|1s0`_ kx;bS$oE")"C["/f*NEFU34|s/8j*_D|ۯP.0k *˓i${[WO"ܢ-WOۯ^}"I!]^VL#*Vg!/_[&eǮZ`NoB+13MtV*&y$Y4:Vn7ӹu=[5MECs0QwXÜdDD醬! ?Ss$yTqYy09%<0˸ْԏhhDe!f46l-6[nofN[wE&S^i7`%$m@k^X<w?~[ xzw,Ђu{u:؄FDv ѡ L;!uҪ}in8mEuZ!TIJ bQه O(iΫ`i0u7%~h,2QWZb"flۢ&"e zXdPꇕ3 &JqI+]H>M}e NfI>n@NB4+cٗ!'@RY %{}̘ӌxAޜ]^_8Ĭd-O5m|idIلFI֕ayGmhFps]Y.PKQC l~홌n&OVtn/V$pX7RLKVد[mL?}?|庆WRsip'*[^7D{)1v V//cֆ;:? )7x<&Nkt;>Y5vn}L@dF0&,k|Ǡ[m9{o~nMI䴆Y,> ,ŪRBb ~J$DeFT} gs2g9P}7K`XHQ>#@_O5.m?yؤ|vtׁp],@]@ #Rh5)IBT1j ;g!t$^@`B> jޘsD L&*r-aS4C+4abgZ>)6T|?r {'=GI& $`sQBc?H w L3 ?ԣ̼`=nU9dBc~]ۻ+}Phk~ӗkς3?3-E䎁f.|%[4=FX-{9N=D)$~'U>]Jw= <'Wv{)O4q yo嶝CUcTZP!tV'3|m҆\/p_r\c̼1Yq>OZBz1 yg|0/U-ܜoh~nX$6„,nZpjgT)Hu)~d|j V{v5M+8XS45VZ91OƟp8Rj@(2h}'L3Dxc!Uw@Y # qYr#dK4% C3qCKm.TgzhPhMЮDpΦ!ZRb[bB()&aa$ZSa]x+ Ҁ@.$iMx0 &fݐU˸*fD~3׿_ WHVɃCIX.p^;+/\чTQ{0eDHWR r%PZ`r xBB Snu-T.pqNٻ8Z^v[TxTDVkT)Y$q3 0R2%(1Ĭݼѳ(TfxjP S<(cM[Fc3SThTDtZ/Xu9m!(*GJ$L? |g;&IVQzV]JQ6pmSUClMG--"n:diz )缆 :yW+ vL2E,/$耔Y="!iV[ՙV  tdZw>̅&mLz`!ԣ$dRZGa\K'D}O aԀ>Sb˘v| ~JV@ZӘ7qr,{V=r)ʅ' 'V v.>9_d$ 6~?w|E޶$NߤbUۢCu:7Tϒ`i.5ҀQm=;x9,tE9H@~ /^;);y숪RG3ҹ,ɞ^ lӜ5)XIuhyNg2#M>.L>~YȪF %~T藩x+wb(BʦeN+eHp$&t$ߨ #E {(.0sF\OZgxTYeڌzw$84TX M>.ٻD3>σO󹩒$Ayzjҡ03&=n.뉬.QH&Ә@AHsf"G`#7Ԡ-WuRʴ mF^߈D [;.1RF6d!F dC0.-M*؃'=`/kd )$ vR 8(׸lf|IBCDORDj}-sl޼hQߕ\if̄k)ۃ6$teW.8pm~o|p'g7 r/tk>~%Hv0u@F:Gkt#R_{?uS

数学小知识或小故事 50字左右100字以内
数学小知识或小故事 50字左右100字以内

数学小知识或小故事 50字左右100字以内
古希腊人在数学中引进了名称,概念和自我思考,他们很早就开始猜测数学是如何产生的.虽然他们的猜测仅是匆匆记下,但他们几乎先占有了猜想这一思考领域.古希腊人随意记下的东西在19世纪变成了大堆文章,而在20世纪却变成了令人讨厌的陈辞滥调.在现存的资料中,希罗多德(Herodotus,公元前484--425年)是第一个开始猜想的人.他只谈论了几何学,他对一般的数学概念也许不熟悉,但对土地测量的准确意思很敏感.作为一个人类学家和一个社会历史学家,希罗多德指出,古希腊的几何来自古埃及,在古埃及,由于一年一度的洪水淹没土地,为了租税的目的,人们经常需要重新丈量土地;他还说:希腊人从巴比伦人那里学会了日晷仪的使用,以及将一天分成12个时辰.希罗多德的这一发现,受到了肯定和赞扬.认为普通几何学有一个辉煌开端的推测是肤浅的.

小明和小亮在一起做算术作业,好几道作业题的答案都是数字0,小明就说0就是没有,小亮说小明错了,小明问他为什么,小亮说,今天现在的温度是0度,你能说现在没有温度吗?

高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ ..... +97+98+99+100 = ?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100 与 100 ...

全部展开

高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ ..... +97+98+99+100 = ?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:
1+2+3+4+ ..... +96+97+98+99+100
100+99+98+97+96+ ..... +4+3+2+1
=101+101+101+ ..... +101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050>
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!

收起

数学家的墓志铭


一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放...

全部展开

数学家的墓志铭


一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语

收起

P/'qwe:[
\L;KY;'
]\;LKLT

大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。
而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时间,这件事被当时的罗马教皇知道了...

全部展开

大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。
而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。
但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。

收起

岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:"把 1到 100的整数写下来,然后把它们加起来!"每当有考试时他们有如下的习惯:第一个做完的就把石板[当时通行,写字用]面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为...

全部展开

岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:"把 1到 100的整数写下来,然后把它们加起来!"每当有考试时他们有如下的习惯:第一个做完的就把石板[当时通行,写字用]面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。

收起

π的历史
圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母“π”来表示。1706年,英国人琼斯首次创用π代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π已成为圆周率的专用符号,π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。
在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是如此。到公元前2...

全部展开

π的历史
圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母“π”来表示。1706年,英国人琼斯首次创用π代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π已成为圆周率的专用符号,π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。
在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将值改为根号10(约为3.16)。真正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于三又七分之一而大于三又七十一分之十。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算π值的,是魏晋时期的刘徽,在公元263年,他创用了用圆的内接正多边形的面积来逼近圆面积的方法,算得π值为3.14。我国称这种方法为“割圆术”。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。
公元460年,南朝的祖冲之利用刘徽的割圆术,把π值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7和113/355,用分数来代替π,极大地简化了计算,这种思想比西方也早一千多年。
祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把π值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为“卢道夫数”。
之后,西方数学家计算 的工作,有了飞速的进展。1948年1月,费格森与雷思奇合作,算出808位小数的π值。计算机问世后,π的人工计算宣告结束。20世纪50年代,人们借助计算机算得了10万位小数的π值,70年代又突破这个记录,算到了150万位。到90年代初,用新的计算方法,算到的值已到了4.8亿位。π的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新。
圆周率π的计算历程
圆周率是一个极其驰名的数。从有文字记载的历史开始,这个数就引进了外行人和学者们的兴趣。作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了。事实也是如此,几千年来作为数学家们的奋斗目标,古今中外一代一代的数学家为此献出了自己的智慧和劳动。回顾历史,人类对 π 的认识过程,反映了数学和计算技术发展情形的一个侧面。 π 的研究,在一定程度上反映这个地区或时代的数学水平。德国数学史家康托说:"历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。"直到19世纪初,求圆周率的值应该说是数学中的头号难题。为求得圆周率的值,人类走过了漫长而曲折的道路,它的历史是饶有趣味的。我们可以将这一计算历程分为几个阶段。

收起

你妈