☆☆简单题干,求证等差数列的,急!已知数列{an}满足 a1=1, an*a(n+1) + 2a(n+1) + 1 = 0 (n∈N+),求数列{1/(an + 1)}为等差数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:27:52
☆☆简单题干,求证等差数列的,急!已知数列{an}满足 a1=1,  an*a(n+1)  + 2a(n+1) + 1 = 0   (n∈N+),求数列{1/(an  +  1)}为等差数列
x͓AN@܁8]G&D 5tD؍I]izց֠I&Cy޼c;e#9يo=:Ѽ=4 [Խjt7?niz8_TL6D$(PS "s}!t No)1em &K*T`tEQ K 䉿%Y.Rܚ:eG94u+W-oj fΙ 4@3<5W_qrs({2F1~dS$Z͂a2B@sO{yn'

☆☆简单题干,求证等差数列的,急!已知数列{an}满足 a1=1, an*a(n+1) + 2a(n+1) + 1 = 0 (n∈N+),求数列{1/(an + 1)}为等差数列
☆☆简单题干,求证等差数列的,急!
已知数列{an}满足 a1=1, an*a(n+1) + 2a(n+1) + 1 = 0 (n∈N+),
求数列{1/(an + 1)}为等差数列

☆☆简单题干,求证等差数列的,急!已知数列{an}满足 a1=1, an*a(n+1) + 2a(n+1) + 1 = 0 (n∈N+),求数列{1/(an + 1)}为等差数列
∵an·a(n+1) + 2a(n+1) + 1 = 0
∴an·a(n+1) + a(n+1) + 1 = -a(n+1)
an·a(n+1) + an + a(n+1) + 1 = an - a(n+1)
(an + 1)·(a(n+1) + 1)= an - a(n+1)
即:
an - a(n+1)
———————————— = 1
(an + 1)·(a(n+1) + 1)
则:
1 1
—————— — ——————
a(n+1) + 1 an + 1
an + 1 - 【a(n+1) - 1】
= ————————————
(an + 1)·(a(n+1) + 1)
an - a(n+1)
= ————————————
(an + 1)·(a(n+1) + 1)
= 1
∵a1=1
∴1/(an + 1)=1/(1+1)=1/2
则数列{1/(an + 1)}为首项是1/2,公差是1的等差数列.