O是平面上一定点,A、B、C是平面上不贡献的三个点,动点P满足向量OP=向量OA+λ*(向量AB/ | 向量AC |+向量AC/ | 向量AC |),λ>0,则点P的轨迹一定通过三角形ABC的()a.外心b.内心c.重心d.垂心3楼
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 15:24:46
O是平面上一定点,A、B、C是平面上不贡献的三个点,动点P满足向量OP=向量OA+λ*(向量AB/ | 向量AC |+向量AC/ | 向量AC |),λ>0,则点P的轨迹一定通过三角形ABC的()a.外心b.内心c.重心d.垂心3楼
O是平面上一定点,A、B、C是平面上不贡献的三个点,动点P满足向量OP=向量OA+λ*(向量AB/ | 向量AC |+向量AC/ | 向量AC |),λ>0,则点P的轨迹一定通过三角形ABC的()
a.外心
b.内心
c.重心
d.垂心
3楼的那位,我题目并没有抄错,原题就是这样的,而且根据答案也能够推出轨迹经过内心
O是平面上一定点,A、B、C是平面上不贡献的三个点,动点P满足向量OP=向量OA+λ*(向量AB/ | 向量AC |+向量AC/ | 向量AC |),λ>0,则点P的轨迹一定通过三角形ABC的()a.外心b.内心c.重心d.垂心3楼
我觉得你的题目似乎抄错了,应该是 :向量AB/ | 向量AB | ,如果是这样,向量AB/ | 向量AB |表示AB方向的单位向量,向量AC/ | 向量AC | 表示AC方向的单位向量,两向量的和向量平分角A,由 向量OP=向量OA+λ*(向量AB/ | 向量AB |+向量AC/ | 向量AC |)可以得出P在角A的角平分线上,又三角形角平分线的交点为内心,所以P的轨迹一定通过内心,选b.
如果题目没错,则 向量OP=向量OA+λ*(向量AB+向量AC)/ | 向量AC |=向量OA+k*(向量AB+向量AC),其中k=λ/ | 向量AC | 为任意>0的常数,向量AB+向量AC平分边BC(根据矢量运算和平行四边形的对角线平分原理),即P点轨迹为过A点和BC边中点的一条直线,又三角形的重心为中线的交点,所以P点的轨迹一定通过重心,选c
侠写
题目?
是重心。从OP=向量OA+λ*(向量AB/ | 向量AC |+向量AC/ | 向量AC |)可以推出向量AP=(λ/ | 向量AC |)*(向量AB+向量AC),即P沿BC边上的中线,所以过重心。