证明√X2+Y2+√(X-1)2+Y2+√X2+(Y-1)2+√(X-1)2+(Y-1)2>=2√2并求=成立时X与Y的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 22:47:45
证明√X2+Y2+√(X-1)2+Y2+√X2+(Y-1)2+√(X-1)2+(Y-1)2>=2√2并求=成立时X与Y的值
x){ٌG"# ]CM( #d vF@!;=dcϦox/ {lij~ }@`O笈щ5ԉ@Qh9 O7CBnWTH݋.}7~+rgklΧ5FkBD "g Ov/E_ 15

证明√X2+Y2+√(X-1)2+Y2+√X2+(Y-1)2+√(X-1)2+(Y-1)2>=2√2并求=成立时X与Y的值
证明√X2+Y2+√(X-1)2+Y2+√X2+(Y-1)2+√(X-1)2+(Y-1)2>=2√2并求=成立时X与Y的值

证明√X2+Y2+√(X-1)2+Y2+√X2+(Y-1)2+√(X-1)2+(Y-1)2>=2√2并求=成立时X与Y的值
√X2+Y2+√(X-1)2+Y2+√X2+(Y-1)2+√(X-1)2+(Y-1)2>=2√2
在\x\=\y\,\x-1\=y,\y-1\=\x\,\x-1\=\y-1\时值最小
解得x=1/2,y=1/2
代入原式:
√X2+Y2+√(X-1)2+Y2+√X2+(Y-1)2+√(X-1)2+(Y-1)2
=4根号(1/2)
=2根号2
所以x=1/2,y=1/2