1/3+1/8+1/15+...+1/120=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 08:39:51
1/3+1/8+1/15+...+1/120=?
xj@_,3_zo!"Dm76+OPEWo4zdu!;3mfh H< .N)K̦;>>:Ouۖ3(G-GbAʫy]繝U}!'1Fm}tR) R Sxdu'f:Z]/J`BLI'|Y1?<2. dq{Wi111*npaE H!!} uh"FJn3lYpDͣ#2]Y*}XOw/W^G{ˮ[qgY]d=l["*?ve /}@s&L^ i ċnbX煐NQ.`eLa|KdkxE7(3\ypјXntOU

1/3+1/8+1/15+...+1/120=?
1/3+1/8+1/15+...+1/120=?

1/3+1/8+1/15+...+1/120=?

原式=1/(1*3)+1/(2*4)+1/(3*5)+.....+1/(10*12)=1/2[(1-1/3)+(1/2-1/4)+(1/3-1/5)+......+(1/10-1/12)]=1/2(1-1/3+1/2-1/4+1/3-1/5+........+1/10-1/12)=1/2[(1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/10)-(1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/10+1/11+1/12)]=1/2(1+1/2-1/11-1/12)=175/264

1/3=(1-1/3)/2
1/8=(1/2-1/4)/2
以此类推,得到上式=(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+1/6-1/8+1/7-1/9+1/8-1/10+1/-1/11+1/10-1/12)/2=(1+1/2-1/11-1/12)/2=175/264