中心在坐标原点,焦点在x轴上的椭圆的离心率为根号3/2它与直线x+y-1=0相交于M、N,若以MN为直径的圆经过坐标原点,求椭圆的方程求简便算法~
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 21:28:48
中心在坐标原点,焦点在x轴上的椭圆的离心率为根号3/2它与直线x+y-1=0相交于M、N,若以MN为直径的圆经过坐标原点,求椭圆的方程求简便算法~
中心在坐标原点,焦点在x轴上的椭圆的离心率为根号3/2
它与直线x+y-1=0相交于M、N,若以MN为直径的圆经过坐标原点,求椭圆的方程
求简便算法~
中心在坐标原点,焦点在x轴上的椭圆的离心率为根号3/2它与直线x+y-1=0相交于M、N,若以MN为直径的圆经过坐标原点,求椭圆的方程求简便算法~
e=c/a=√3/2,a^2 =c^2 +b^2,→
a^2 =4·b^2.
令b^2=t(>0);则 a^2 =4t;
则可设该椭圆方程为
x^2 /4t + y^2 /t =1;
即 x^2 + 4y^2 =4t;
与方程 x+y-1=0 联立,得
5x^2 -8x +(4-4t)=0;
解得
xM=[4+2√(5t-1)]/5,xN=[4-2√(5t-1)]/5.
所以:
yM=[1-2√(5t-1)]/5,yN=[1+2√(5t-1)]/5.
则
向量OM=( [4+2√(5t-1)]/5,[1-2√(5t-1)]/5 );
向量ON=( [4-2√(5t-1)]/5,[1+2√(5t-1)]/5 ).
若以MN为直径的圆经过坐标原点,则根据圆的性质可知,∠MON为直角.
则:向量OM⊥向量ON.
则:向量OM·向量ON=0.
即:( [4+2√(5t-1)]/5,[1-2√(5t-1)]/5 )·( [4-2√(5t-1)]/5,[1+2√(5t-1)]/5 )=0;
即
[4+2√(5t-1)]·[4-2√(5t-1)]/25 + [1-2√(5t-1)]·[1+2√(5t-1)]/25 =0;
→ [16 -4(5t-1)] + [1-4(5t-1)] =0;
→ 整理得:t=5/8;
则椭圆的方程就是
x^2 + 4y^2 =5/2.
//你可以用交点坐标方程相减的方法;用差商法代出斜率,坐标和为中点值;但所有的方法计算量都是一样的;因为所要求的东西实际上一样都不会省略掉.