已知函数y=(tanx-tan^3 x)/(1+2tan^2 x+tan^4 x)的最大值与最小值的积为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:35:24
已知函数y=(tanx-tan^3 x)/(1+2tan^2 x+tan^4 x)的最大值与最小值的积为
x){}K}6uCFIb^.3V06q*A Pgs.Yaϓ} ~ (|';v$X;ڹwV y6yN}:qQXlRS64ۤ`jThj5*ԆХ i(NM&VBr~1 PEř@5@1 r@SWUmd9J aӯao 37@Dlz<2|]$*5?ٽ=qC3<;hsv=];H>[tBϳ^\dR!T1 Mfp\===Ժe>0?==gSغI/

已知函数y=(tanx-tan^3 x)/(1+2tan^2 x+tan^4 x)的最大值与最小值的积为
已知函数y=(tanx-tan^3 x)/(1+2tan^2 x+tan^4 x)的最大值与最小值的积为

已知函数y=(tanx-tan^3 x)/(1+2tan^2 x+tan^4 x)的最大值与最小值的积为
呵呵,有点简单呢~
(tanx - tan³x)/(1 + 2tan²x + tan^4(x))
= (tanx - tan³x)/(1 + tan²x)²
= (tanx - tan³x)/(sec²x)²
= (tanx - tan³x) * cos^4(x)
= sinx cos³x - sin³x cosx
= sinx cosx (cos²x - sin²x)
= sinx cosx cos2x
= (1/2) sin2x cos2x
= (1/4) sin4x
最大值是1/4,最小值是-1/4
它们的积是-1/16

分子分母同时除以
tan^2 x
再运算

(tanx - tan³x)/(1 + 2tan²x + tan^4(x))
= (tanx - tan³x)/(1 + tan²x)²
= (tanx - tan³x)/(sec²x)²
= (tanx - tan³x) * cos^4(x)
= sinx cos³...

全部展开

(tanx - tan³x)/(1 + 2tan²x + tan^4(x))
= (tanx - tan³x)/(1 + tan²x)²
= (tanx - tan³x)/(sec²x)²
= (tanx - tan³x) * cos^4(x)
= sinx cos³x - sin³x cosx
= sinx cosx (cos²x - sin²x)
= sinx cosx cos2x
= (1/2) sin2x cos2x
= (1/4) sin4x
最大值是1/4,最小值是-1/4
它们的积是-1/16

收起