已知sin(α+β)=1,求tan(2α+β)=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 13:30:07
已知sin(α+β)=1,求tan(2α+β)=0
x){}K38Qܦ{:m uml*I0 i$VΆ4_.|Xٌz0U Ffm &[G sNX6 ٌ>:D$^ģIG u*@3`@ʌ`h"QУR*K;7 ,d ׫ (F Տ6FP haH%qS\g"I

已知sin(α+β)=1,求tan(2α+β)=0
已知sin(α+β)=1,求tan(2α+β)=0

已知sin(α+β)=1,求tan(2α+β)=0
题目应该是:“sin(α+β)=1,求证:tan(2α+β)+tanβ=0 ”吧
证明:sin(a+b)=1
→cos(a+b)=√[1-sin^2(a+b)]=0
→sin(2a+2b)=2*sin(a+b)*cos(a+b)=0
→tan(2a+2b)=sin(2a+2b)/cos(2a+2b)=0
tan(2a+b)+tanb
=tan(2a+2b-b)+tanb
=[tan(2a+2b)-tanb]/[1+tan(2a+2b)tanb]+tanb
=[0-tanb]/[1+0*tanb]+tanb
=-tanb+tanb
=0