在△ABC中,BC=根号5,AC=3,sinC=2sinA,1.求AB的值,2.sin〔2A-π/4〕的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 18:29:33
在△ABC中,BC=根号5,AC=3,sinC=2sinA,1.求AB的值,2.sin〔2A-π/4〕的值
xUnQ~Vf2L" irg`T"qeLEhJ6V4-Ctt+x04,Օss=#] lq0u#Dz<{h~qTy+r(RXnH=}jv!W:mN0IGko FX6cZv/79$'աSgFTizk26tä7&  t4(<@$Q9 &2=-?UBn6.|f(%l˽ʢGseb`)̨*`8C%!bX&i^]4ҤifT[nҘ*-G%By#*>OzJDtm>OXKfeP8 q$B'L T%5;3VXbA(#'8xerE6~X[+? /P .x.auom‘Ҷ߲N;Op)ёk;AkoU_?knycyݠ%~_xXlVjvI:X?ˬ{;"iTyw2 $"LS #`_71z*F8b!dJOB0^Ԣ?PQƲ ʺX~Ti<2(pqz,~4w

在△ABC中,BC=根号5,AC=3,sinC=2sinA,1.求AB的值,2.sin〔2A-π/4〕的值
在△ABC中,BC=根号5,AC=3,sinC=2sinA,1.求AB的值,2.sin〔2A-π/4〕的值

在△ABC中,BC=根号5,AC=3,sinC=2sinA,1.求AB的值,2.sin〔2A-π/4〕的值
(1)因BC对应于∠A,AB对应于∠C.
应用正弦定理得:
BC/sinA=AB/sinC
AB=BCsinC/sinA=BC2sinA/sinA=2BC
故,AB=2√5.
(2) sin(2A-π/4)=sin2Acos(π/4)-cos2Asin(π/4)
=[(√2)/2](sin2A-cos2A)
利用余弦定理求角A:
cosA=(AB²+AC²-BC²)/2AB*AC
=[(2√5)²+3²-(√5)²]/2×(2√5)×3
=(20+9-5)/12(√5)
故,cosA=(2√5)/5
sinA=√[1-cos²A]=(√5)/5
sin(2A-π/4)=[(√2)/2][2sinAcosA-(2cos²A-1)]
=[(√2)/2]{2×(√5/5)×(2√5/5)-[2×(2√5/5)²-1]}
整理后得:
sin(2A-π/4)=(√2)/10

1、BC/sinA=AB/sinC
∵sinC=2sinA sinC:sinA=AB:BC=2:1
∴AB=BCsinC/sinA=2倍根号5
2、知三角形三条边长可由余弦定理的逆定理求出角的余弦值
然后也可由已知求正弦值
再把sin〔2A-π/4〕化简,即可求出所要的值
第二步这些计算就留给你了,只告诉你思路,你能行的...

全部展开

1、BC/sinA=AB/sinC
∵sinC=2sinA sinC:sinA=AB:BC=2:1
∴AB=BCsinC/sinA=2倍根号5
2、知三角形三条边长可由余弦定理的逆定理求出角的余弦值
然后也可由已知求正弦值
再把sin〔2A-π/4〕化简,即可求出所要的值
第二步这些计算就留给你了,只告诉你思路,你能行的

收起

(1)∵sinC=2sinA∴AB=2BC(正弦定理)∴AB=2√5.
(2)∵AB=2√5,BC=√5,AC=3,
∴cosA=2√5/5(余弦定理),sinA=√5/5
∴sin2A=2sinAcosA=4/5,cos2A=1-2(sinA)^2=3/5
∴sin〔2A-π/4〕=√2/2(sin(2A)-cos(2A))√2/10