已知a,b,c是三角形ABC的三边的长,且满足c^4+2a^4+2b^4-2c^2(a^2+b^2),试判断此三角形的形状

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/29 02:10:02
已知a,b,c是三角形ABC的三边的长,且满足c^4+2a^4+2b^4-2c^2(a^2+b^2),试判断此三角形的形状
xSN@i`D&m k D^*H.-V@Hi2;L$ŭg*r'4;ŝ ~ r=YbY%^dFVyYD_~F+7$_# =hFW Ǣ8%TAw;PȬ [D<)jqmarmEdVMvyegB5U"8Is6LյK^N_y774YDmJlk[4kw׆-/I-P});T(d+;٧(gp"RFƩi1Z__I9[O헃@=@ڥ ?Lun

已知a,b,c是三角形ABC的三边的长,且满足c^4+2a^4+2b^4-2c^2(a^2+b^2),试判断此三角形的形状
已知a,b,c是三角形ABC的三边的长,且满足c^4+2a^4+2b^4-2c^2(a^2+b^2),试判断此三角形的形状

已知a,b,c是三角形ABC的三边的长,且满足c^4+2a^4+2b^4-2c^2(a^2+b^2),试判断此三角形的形状
你可能是忙中出错了!条件是 c^4+2a^4+2b^4-2c^2(a^2+b^2)=0 吧.
若是这样,则方法如下:
∵c^4+2a^4+2b^4-2c^2(a^2+b^2)=0,
∴c^4-2c^2(a^2+b^2)+(a^2+b^2)^2-(a^2+b^2)^2+2a^4+2b^4=0,
∴[c^2-(a^2+b^2)]^2-a^4-2a^2b^2-b^4+2a^4+2b^4=0,
∴[c^2-(a^2+b^2)]^2+(a^2-b^2)^2=0,
∴c^2-(a^2+b^2)=0,且a^2-b^2=0.
由a^2-b^2=0,得:a=b.∴此三角形是等腰三角形.······①
由c^2-(a^2+b^2)=0,得:c^2=a^2+b^2,
∴由勾股定理的逆定理,得:此三角形是直角三角形.······②
综合①、②,得:△ABC是以BC为底边的等腰直角三角形.
注:若题目的条件不是我所猜测的那样,则请你补充说明.