证明(N减9) 的平方减(n加5)的平方能被28整除其中N是正整数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:34:09
证明(N减9) 的平方减(n加5)的平方能被28整除其中N是正整数
x){ٌ> g<ݹٴ@=yO ~ѼŢFϦny9smOv{6cBϦnI*ҧv6q)Ԉ랶yh,<]K8#]

证明(N减9) 的平方减(n加5)的平方能被28整除其中N是正整数
证明(N减9) 的平方减(n加5)的平方能被28整除其中N是正整数

证明(N减9) 的平方减(n加5)的平方能被28整除其中N是正整数
平方差公式:(n-9)^2-(n+5)^2=(n-9-(n+5))(n-9+n+5)=-14*(2n+4)
=-28*(n+2)
因为n是正整数,所以能被28整除.