在三角形ABC中,sinA=/3sinC,且面积S=b(平方)tanB,试判断三角形ABC的形状?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 15:56:16
在三角形ABC中,sinA=/3sinC,且面积S=b(平方)tanB,试判断三角形ABC的形状?
xRJASL>9u1b $ApA/=Whf%ߟSi2y:ѵ\ j-qRpSau#&h=F] ޸OmvX0J.'QΟ䤟^"tL9 6eM*NJXP r=~5 2l[ EF_ 3vX9]Koc1wfT4A'ݳڪyWmv{k.Eڭ=b" %S"ZM`|)U

在三角形ABC中,sinA=/3sinC,且面积S=b(平方)tanB,试判断三角形ABC的形状?
在三角形ABC中,sinA=/3sinC,且面积S=b(平方)tanB,试判断三角形ABC的形状?

在三角形ABC中,sinA=/3sinC,且面积S=b(平方)tanB,试判断三角形ABC的形状?
根据正弦定理,sinA/a=sinC/c,sinA/sinC=a/c=√3,
∴a=√3c,
S=(a*csinB)/2=(√3/2)c^2sinB,
S=b^2tanB=b^2sinB/cosB,
(√3/2)c^2sinB=b^2sinB/cosB,
(√3/2)c^2=b^2/cosB,
(c/b)^2=(2/√3)/cosB,
2/√3=2√3/3>0,
∵cosB≤1
∴1/cosB>1,(因S=b^2tanB,B≠90°,故cosB≠1),
∴(c/b)^2>1,
∴c>b,
∴a>c>b,
根据余弦定理,
cosA=(b^2+c^2-a^2)/(2bc)
=(b^2+c^2-3c^2)/(2bc)
=(b^2-2c^2)/(2bc)