证明cos²(A+B)—sin²(A—B)=cos2Acos2B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 04:00:49
证明cos²(A+B)—sin²(A—B)=cos2Acos2B
x){ٌb5eCs {:|083!䃄m*AMR>% l(e/DtIUW$)Ak[g9)h+vt`ì!"0mLq V更Pb&2*qipBHt1 if`ulyo:0 $ف

证明cos²(A+B)—sin²(A—B)=cos2Acos2B
证明cos²(A+B)—sin²(A—B)=cos2Acos2B

证明cos²(A+B)—sin²(A—B)=cos2Acos2B
左边=(cosAcosB-sinAsinB)²-(sinAcosB-cosAsinB)²
=cos²Acos²B + sin²Asin²B - 2sinAsinBcosAcosB - sin²Acos²B - cos²Asin²B + 2sinAsinBcosAcosB
=cos²Acos²B + sin²Asin²B - sin²Acos²B - cos²Asin²B
=cos²B(cos²A - sin²A) - sin²B(cos²A - sin²A)
=(cos²B-cos²B)(cos²A-sin²A)
=cos2Acos2B=右边
∴得证