当x-y=1,求x^4-xy^3-x^3y-3x^2y+3xy^2+y^4的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:51:33
x){wrnγMq&qƺqƕqF@#8Z6I*'Y~
y6UVa~OXP=` Id@@hV@I0.Br@c+*Fi"(bFA$0~qAb(0 :@*
当x-y=1,求x^4-xy^3-x^3y-3x^2y+3xy^2+y^4的值
当x-y=1,求x^4-xy^3-x^3y-3x^2y+3xy^2+y^4的值
当x-y=1,求x^4-xy^3-x^3y-3x^2y+3xy^2+y^4的值
x^4-xy^3-x^3y-3x^2y+3xy^2+y^4
=(x^4-x^3y)-xy^3+y^4-3x^2y+3xy^2
=x^3(x-y)-y^3(x-y)-3xy(x-y)
=x^3-y^3-3xy
=(x-y)(x^2+xy+y^2)-3xy
=x^2+xy+y^2-3xy
=x^2-2xy+y^2
=(x-y)^2
=1