x^4y-x^3y^2-x^2y^3+xy^4因式分解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:47:42
x^4y-x^3y^2-x^2y^3+xy^4因式分解
x)3ԭ33RFqq&Og/xiGۋmR_`gC@e`5@F@HRFPBFR,gd_\gyf͓ /|:~:{6=mOzOY|ui ٧kNzɮ';:AW=HjgS7dwv?d6>3ɮ6l6@qobH3AdCč@އaGQ $Sz

x^4y-x^3y^2-x^2y^3+xy^4因式分解
x^4y-x^3y^2-x^2y^3+xy^4因式分解

x^4y-x^3y^2-x^2y^3+xy^4因式分解
=xy(x^3-x^2y-xy^2+y^3)
=xy(x^2(x-y)-y^2(x-y)
=xy(x+y)(x-y)^2

第一项和第四项合并再用立方和公式,二三项只提取公因数,之后你就会了

x^4y-x^3y^2-x^2y^3+xy^4
=x^3y(x-y)-xy^3(x-y)
=(x-y)(x^3y-xy^3)
=xy(x-y)(x^2-y^2)
xy(x-y)(x+y)(x-y)
=xy(x-y)^2(x+y)